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This article describes the mathematics of the normal and transverse
Mercator projections on the sphere and the ellipsoid with full deriva-
tions of all formulae.

The Transverse Mercator projection is the basis of many maps cov-
ering individual countries, such as Australia and Great Britain, as
well as the set of UTM projections covering the whole world (other
than the polar regions). Such maps are invariably covered by a set of
grid lines. It is important to appreciate the following two facts about
the Transverse Mercator projection and the grids covering it:

1. Only one grid line runs true north–south. Thus in Britain only
the grid line coincident with the central meridian at 2◦W is
true: all other meridians deviate from grid lines. The UTM
series is a set of 60 distinct Transverse Mercator projections
each covering a width of 6◦in latitude: the grid lines run true
north–south only on the central meridians at 3◦E, 9◦E, 15◦E,
. . .

2. The scale on the maps derived from Transverse Mercator pro-
jections is not uniform: it is a function of position. For ex-
ample the Landranger maps of the Ordnance Survey of Great
Britain have a nominal scale of 1:50000: this value is only ex-
act on two slightly curved lines almost parallel to the central
meridian at 2◦W and distant approximately 180km east and
west of it. The scale on the central meridian is constant but it
is slightly less than the nominal value.

The above facts are unknown to the majority of map users. They are
the subject of this article together with the presentation of formulae
relating latitude and longitude to grid coordinates.



Preface

For many years I had been intrigued by the the statement on the (British) Ordnance
Survey maps pointing out that the grid lines are not exactly aligned with meridians and
parallels: four precise figures give the magnitude of the deviation at each corner of the
map sheets. My first retirement project has been to find out exactly how these figures
are calculated and this has led to an exploration of all aspects of the Transverse Mercator
projection on an ellipsoid of revolution (TME). This projection is also used for the Universal
Transverse Mercator series of maps covering the whole of the Earth, except for the polar
regions.

The formulae for TME are given in many books and web pages but the full derivations
are only to be found in original publications which are not readily accessible: therefore I de-
cided to write a short article explaining the derivation of the formulae. Pedagogical reasons
soon made it apparent that it would be necessary to start with the normal and transverse
Mercator projection on the sphere (NMS and TMS) before going on to discuss the nor-
mal and transverse Mercator projection on the ellipsoid (NME and TME). As a result, the
length of this document has doubled and redoubled but I have resisted the temptation to cut
out details which would be straightforward for a professional but daunting for a ‘layman’.
The mathematics involved is not difficult (depending on your point of view) but it does re-
quire the rudiments of complex analysis for the crucial steps. On the other hand the algebra
gets fairly heavy at times; Redfearn (1948) talks of a “a particularly tough spot of work”
and Hotine (1946) talks of reversing series by “brute force and algebra”—so be warned.
Repeating this may be seen as a perverse undertaking on my part. To make this article
as self-contained as possible I have added a number of appendices covering the required
mathematics.

My sources for the TME formulae are to be found in Empire Survey Review dating from
the nineteen forties to sixties. The actual papers are fairly terse, as is normal for papers by
professionals for their peers, and their perusal will certainly not add to the details presented
here. Books on mathematical cartography are also fairly thin on the ground, moreover they
usually try to cover all types of projections whereas we are concerned only with Mercator
projections. The few books that I found to be of assistance are listed in the Literature (L) or
References R but they are supplemented with research papers and web material.

This second edition (2013) adds further material and enters the world of hyperref.

I would like to thank Harry Kogon for reading, commenting on and even checking the
mathematics outlined in these pages. Any remaining errors (and typographical slips) must
be attributed to myself—when you find them please send an email to the address below.

Peter Osborne

Edinburgh, 2008, 2013

Source files peter.1@mercator.myzen.co.uk

http://mercator.myzen.co.uk
mailto:peter.1@mercator.myzen.co.uk
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Chapter1
Introduction

1.1 Geodesy and the Figure of the Earth

Geodesy is the science concerned with the study of the exact size and shape of the Earth in
conjunction with the analysis of the variations of the Earth’s gravitational field. This com-
bination of topics is readily appreciated when one realizes that (a) in traditional surveying
the instruments were levelled with respect to the gravitational field and (b) in modern satel-
lite techniques we must consider the satellite as an object moving freely in the gravitational
field of the Earth. Geodesy is the scientific basis for both traditional triangulation on the
actual surface of the earth and modern surveying using GPS methods.

Whichever method we use, traditional or satellite, it is vital to work with well defined
reference surfaces to which measurements of latitude and longitude can be referred. Clearly,
the actual topographic surface of the Earth is very unsuitable as a reference surface since
it has a complicated shape, varying in height by up to twenty kilometres from the deep-
est oceans to the highest mountains. A much better reference surface is the gravitational
equipotential surface which coincides with the mean sea level continued under the conti-
nents. This surface is called the geoid and its shape is approximately a flattened sphere but
with many slight undulations due to the gravitational irregularities arising from the inhomo-
geneity in the Earth’s crust.

However, for the purpose of high precision geodetic surveys, the undulating geoid is not
a good enough reference surface and it is convenient to introduce a mathematically exact
reference surface which is a good fit to the shape of the geoid. The surface which has been
used for the last three hundred years is the oblate ellipsoid of revolution formed when an
ellipse is rotated about its minor axis. We shall abbreviate ‘ellipsoid of revolution’ to simply
ellipsoid in this article, in preference to the term spheroid which is used in much of the older
literature. (We shall not consider triaxial ellipsoids which do not have an axis of symmetry).
The shape and size of the reference ellipsoid which approximates the geoid is usually called
the figure of the Earth.

http://en.wikipedia.org/wiki/Geoid
http://en.wikipedia.org/wiki/Ellipsoid_of_revolution
http://en.wikipedia.org/wiki/Spheroid
http://en.wikipedia.org/wiki/Triaxial_ellipsoid
http://en.wikipedia.org/wiki/Figure_of_the_Earth
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The earliest accurate determinations of the figure of the earth were made by comparing
two high precision meridian arc surveys, each of which provided a measure of the distance
along the meridian per unit degree at a latitude in the middle of each arc. Two such mea-
surements, preferably at very different latitudes, are sufficient to determine two parameters
which specify the ellipsoid—the major axis a together with the minor axis b or, more usu-
ally, the combination of the major axis with the flattening f (defined below). For example,
in the first half of the eighteenth century (from 1734–1749) , French scientists measured
a meridian arc of about one degree of latitude in Scandanavia crossing the Arctic circle
(French Geodesic Mission to Finland) and a second arc of about three degrees crossing the
equator in Peru ( French Geodesic Mission to Peru) and confirmed for the first time the
oblateness of the ellipsoid. (See Clarke (1880), pp 4–13) More accurate measurements of
a French arc, supervised by Delambre from 1792, determined the meridian quadrant from
equator to pole through Paris, as 5130766 toises (of Peru), the standard of length used in
the measurement of the Peruvian arc. The standard toise bar was held in Paris. The French
then defined the meridian quadrant to be 10,000,000 metres and the first standard metre bar
was constructed at a length of 0.5130766 toise. (Clarke (1880), pp 18–22).

In 1830 George Everest calculated an ellipsoid using what he took to be the best two
arcs, an earlier Indian Arc surveyed by his predecessor William Lambton and once again
the arc of Peru. As more and longer arcs were measured the results were combined to give
more accurate ellipsoids. For example George Biddell Airy discussed sixteen arcs before
arriving at the result he published in 1830:

a = 6377563.4m b = 6356256.9m f = 1/299.32 [Airy1830] (1.1)

where the flattening f , defined as (a− b)/a, gives a measure of the departure from the
sphere. Similarly Alexander Ross Clarke used eight arcs to arrive at his 1866 ellipsoid:

a = 6378206.4m b = 6356583.8m f = 1/294.98 [Clarke1866] (1.2)

Modern satellite methods have introduced global ellipsoid fits to the geoid, that for the
Geodetic Reference System of 1980 (GRS80) being

a = 6378137m b = 6356752.3m f = 1/298.26 [GRS80/WGS84] (1.3)

There are many ellipsoids in use today and they differ by no more than a kilometre from
each other, with an equatorial radius of approximately 6378km (3963 miles) and a polar
semi-axis of 6356km (3949 miles) shorter by approximately 22km (14 miles). Note that
modern satellite ellipsoids, whilst giving good global fits, are actually poorer fits in some
regions surveyed on a best-fit ellipsoid derived by traditional (pre-satellite) methods.

1.2 Topographic surveying

The aim of a topographic survey is to provide highly accurate maps of some region ref-
erenced to a specific datum. By this we mean a choice of a definite reference ellipsoid

http://en.wikipedia.org/wiki/Meridian_arc
http://en.wikipedia.org/wiki/Torne_Valley
http://en.wikipedia.org/wiki/French_Geodesic_Mission
http://en.wikipedia.org/wiki/Toise
http://en.wikipedia.org/wiki/George_Everes
http://en.wikipedia.org/wiki/William_Lambton
http://en.wikipedia.org/wiki/George_Biddell_Airy
http://en.wikipedia.org/wiki/Alexander_Ross_Clarke
http://en.wikipedia.org/wiki/Datum_(geodesy)
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together with a precise statement as to how the ellipsoid is related to the area under survey.
For example we could specify how the centre of the selected ellipsoid is related to the cho-
sen origin of the survey and also how the orientation of the axes of the ellipsoid are related
to the vertical and meridian at the origin. It is very important to realize that the choice of
datum for any such survey work is completely arbitrary as long as it is a reasonable fit to
the geoid in the region of the survey. The chosen datum is usually stated on the final maps.

As an example, the maps produced by the Ordnance Survey of Great Britain (OSGB,
1999) are defined with respect to a datum OSGB36 (established for the 1936 re-survey)
which is still based on the Airy 1830 ellipsoid which was chosen at the start of the original
triangulation in the first half of the nineteenth century. This ellipsoid is indeed a good fit to
the geoid under Britain but it is a poor fit everywhere else on the globe so it is not used for
mapping any other country. The OSGB36 datum defines how the Airy ellipsoid is related
to the the ground stations of the survey. Originally, in the nineteenth century, the origin
was chosen at Greenwich observatory but, for the 1936 re-triangulation no single origin
was chosen, rather the survey was adjusted so that the latitude and longitude of 11 control
stations remained as close as possible to their values established in the original nineteenth
century triangulation.

Until 1983, the United States, Canada and Mexico used the North American datum
established in 1927, namely NAD27. This is based on the Clarke (1866) ellipsoid tied to
an origin at Meades Ranch in Kansas where the latitude, longitude, elevation above the
ellipsoid and azimuth toward a second station (Waldo) were all fixed. Likewise, much
of south east Asia uses the Indian datum, ID1830, which is based on the Everest (1830)
ellipsoid tied to an origin at Kalianpur. The modern satellite ellipsoids used in the World
Geodetic System suchs WGS72, GRS80, WGS84 are defined with respect to the Earth’s
centre of mass and a defined orientation of axes. See Global Positioning System.

In all, there are two or three hundred datums in use over the world, each with a chosen
reference ellipsoid attached to some origin. The ellipsoids used in the datums do not agree
in size or position and a major problem for geodesy (and military planners in particular)
is how to tie these datums together so that we have an integrated picture of the world’s
topography. In the past datums were tied together where they overlapped but now we can
relate each datum to a single geocentric global datum determined by satellite.

Once the datum for a survey has been chosen we would traditionally have proceeded
with a high precision triangulation from which, by using the measured angles and baseline,
we can calculate the latitude and longitude of every triangulation station from assumed
values of latitude and longitude at the origin. Note that it is the latitude and longitude values
on the reference ellipsoid ‘beneath’ every triangulation station that are calculated and used
as input data for the map projections. It is important to realise that once a datum has been
chosen for a survey in some region of the Earth (such as Britain or North America) then
it should not be altered, otherwise the latitude and longitude of every feature in the survey
region would have to be changed (by recalculating the triangulation data). But this has
already happened and it will happen again. For example the North American datum NAD27
was replaced by a new datum NAD83 necessitating the recalculation of all coordinates, with
resulting changes in position ranging from 10m to 200m. If (when) we use one of the new

http://en.wikipedia.org/wiki/Ordnance_Survey
http://en.wikipedia.org/wiki/OSGB36
http://en.wikipedia.org/wiki/NAD83
http://en.wikipedia.org/wiki/World_Geodetic_System
http://en.wikipedia.org/wiki/World_Geodetic_System
http://en.wikipedia.org/wiki/Global Positioning System
http://en.wikipedia.org/wiki/Triangulation
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global datums fitted by satellite technology as the basis for new maps then the latitude and
longitude values of every feature will change slightly again.

1.3 Cartography

A topographic survey produces a set of geographical locations (latitude and longitude) ref-
erenced to some specified datum. The problem of cartography, the representation of the
latitude–longitude data on thedatum by a two-dimensional map. There are an infinite num-
ber of projections which address this problem but in this article we consider only the nor-
mal (N) and transverse (T) Mercator projections, first on the sphere (S) and then on the
ellipsoid (E). We shall abbreviate these projections as NMS, TMS, NME and TME: they
are considered in full detail in Chapters 2, 3, 6 and 7 respectively. Formulae (without
derivations) may also be found in in Map Projections—A Working Manual, (Snyder, 1987).

We define a map projection by two functions x(φ ,λ ) and y(φ ,λ ) which specify the
plane Cartesian coordinates (x,y) corresponding to the latitude and longitude coordinates
(φ , λ ). For the above projections the fundamental origin is taken as a point O on the equa-
tor, the positive x-axis is taken as the eastward direction of the projected equator and the
positive y-axis is taken as the northern direction of the projected meridian through O. This
convention agrees with that used in Snyder’s book but beware other conventions! Many
older texts, as well as most current ‘continental’ sources, adopt a convention with the x-axis
as north and the y-axis as sometimes east and sometimes west! The convention x-north and
y-east is also useful when complex mathematics is used, for example Karney (2011),

1.4 The criteria for a faithful map projection

There are several basic criteria for a faithful map projection but it is important to understand
that it is impossible to satisfy all these criteria at the same time. This is simply a reflection
of the fact that it is impossible to deform a sphere or ellipsoid into a plane without creases
or cuts. (This follows from the Theorema Egregium of Gauss. See Gauss (1827)) Thus
all maps are compromises to some extent and they must fail to meet at least one of the
following five properties

1. One-to-one correspondence of points. This will normally be the case for large scale
maps of small regions but global maps will usually fail this criterion. Points at which
the map fails to be one-to-one are called singular points. For example, in the normal
Mercator projection the poles are singular because they project into lines.

2. Uniformity of point (or local) scale. By point scale we mean the ratio of the distance
between two nearby points on the map and the corresponding points on the ground.
Ideally the point scale factor should have the same value at all points. This criterion
is never satisfied. In the Mercator projections the scale is ‘true’ only on two lines at
the most.

http://en.wikipedia.org/wiki/Theorema_Egregium
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Scale_(map)
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3. Isotropy of point scale. Ideally the scale factor would be isotropic (independent
of direction) at any point and as a corollary the shape of any small region would be
unaltered—such a projection is said to be orthomorphic (right shape). By ‘small’ we
mean that, at some level of measurement accuracy, the magnitude of the scale does
not vary over the small region. This condition is satisfied by the Mercator projections.

4. Conformal representation. Consider any two lines on the surface of the Earth which
intersect at a point P at an angle θ . Let P′ and θ ′ be the corresponding point and angle
on the map projection. The map is said to be conformal if θ = θ ′ at all non-singular
points of the map. This has the consequence that the shape of a local feature (such
as a short stretch of coastline or a river) is well represented even though there will be
distortion over large areas. All Mercator projections satisfy this criterion.

5. Equal area. We may wish to demand that equal areas on the Earth have equal areas
on the projection. This is considered to be ‘politically correct’ by many proponents of
the Gall-Peters projection but the downside is that such equal area projections distort
shapes in the large. The Mercator projections do not preserve area .

In summary the normal Mercator projection has the properties: (a) there are singular
points at the poles, (b) the point scale is isotropic (so the map is orthomorphic) but the
magnitude of the scale varies with latitude, being true on two parallels at most, (c) the
projection is conformal, (d) the projection does not preserve area. The transverse Mercator
projection has the properties: (a) there are singular points on the equator, (b) the scale
is isotropic (so the map is orthomorphic) with magnitude varying with both latitude and
longitude, being true on at most two curved lines which cannot be identified with parallels
or meridians, (c) the projection is conformal, (d) the projection does not preserve area.

1.5 The representative fraction (RF) and the scale factor

The OSGB (1999) produces many series of maps of Great Britain. For example there are
over two hundred ‘Landranger’ map sheets which are endorsed with the phrase ’1:50,000
scale’, implying that each 80cm×80cm sheet covers an area of 40km×40km on the ground.
This statement is misleading. To clarify the issue we distinguish two concepts: the repre-
sentative fraction and the scale factor.

There are four conceptual steps involved in making a map: (1) a survey produces lati-
tude, longitude data on a spherical or ellipsoidal datum; (2) the datum is reduced to a small
model, the reduction factor being the representative fraction; (3) the position locations on
the small model are projected (by specified formulae, not simply literally) onto a cylindrical
or conical sheet ‘wrapped’ about the model; (4) the sheet is cut and opened out to give a pla-
nar map projection. If, in this construction, the cylinder was tangential to the model at the
equator, the map distances on the equator will equal these on the reduced model and we say
that the map scale factor is unity on the equator. The scale factor at other points will vary in
a way which is determined by the projection formulae and maintaining a small variation of
the scale factor over the map is an important criterion in the choice of projection. Note that

http://en.wikipedia.org/wiki/Gall-Peters projection


Chapter 1. Introduction 14

the second and third of the conceptual steps may be interchanged. Of course one doesn’t
construct physical models, neither does one wrap them in sheets of paper: only one step is
needed from a data-base of locations straight to a printer by way of a computer program.

Returning to the example of the 1:50,000 map series produced by the OSGB we now
interpret that figure as the constant representative fraction. For the details of the projection
we have to consult the OSGB (1999) literature where we find that the map scale factor, the
ratio of nearby distances on the map divided by the corresponding distance on the reduced
datum model, is fixed as 0.9996 on the meridian at 2◦W and elsewhere varies according to
precise formulae which we shall display later. This implies that 2cm on the map, the spacing
between the grid lines, represents a true distance on the ground of between 0.9996km and
1.0007km. Thus each 80cmx80cm map sheet covers only approximately 40km×40km. The
precise variation of scale factor with position will be calculated in later chapters.

Note the usage that a printed map is ‘large scale’ when the RF, considered as a mathe-
matical fraction, is ‘large’ and the map covers a small area. The OSGB 1:50000 maps are
considered to be in this category and the 1:5000 series are of even larger scale. Conversely
small scale maps having a small RF, say 1:1000000 (or simply 1:1M), are used to cover
greater regions.

This is an appropriate point to mention the concept of a zero dimension for a map pro-
jection. This is the smallest size that can be printed on the map and remain visible to the
naked eye. Before the age of digital maps this was often taken as 0.2mm, corresponding to
10m on a 1:50000 map. Thus narrow streams or roads cannot be shown to scale on such a
map. Even wide roads, such as motorways, are often shown at exaggerated scales. Modern
digital systems are more powerful since they can show more and more detail as the map is
zoomed.

1.6 Graticules, grids, azimuths and bearings

The set of meridians and parallels on the reference ellipsoid is called the graticule. There is
no obligation to show the projection of the graticule on the map projection but it is usually
shown on small scale maps covering large areas, such as world maps. and it is usually omit-
ted on large scale maps of small areas. For the OSGB 1:50000 series there is no graticule
but small crosses indicate the intersections of the graticule at 5′ intervals on the sheet and
latitude and longitude values are indicated at the edges of the sheet.

The projected map is usually constructed in a plane Cartesian coordinate system but
once again there is no obligation to show a reference grid of lines of constant x and y
values. In general small scale maps are not embellished with a grid whereas large scale
maps usually do have such a reference grid. The OSGB 1:50000 map sheets have a grid at
a 2cm intervals corresponding to a nominal (but not exact) spacing of 1km. Note that any
kind of grid may be superimposed on a map to meet a user’s requirements: it need not be
aligned to the Cartesian projection axes, nor need it be a Cartesian grid.

On the graticule the angle between the meridian at any point A and another short line
element AB is called the azimuth of that line element. Our convention is that azimuths are
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measured clockwise from north but other conventions exist. (Occasionally azimuth has been
measured clockwise from south!) On a projection endowed with a grid the angle between
the grid line through the projected position of A and the projection of the line AB is called
the grid bearing. This clear distinction in terminology shall be adhered to in this work but
it is by no means universal.

On normal Mercator projections the projected graticule is aligned to the underlying
Cartesian system so the constant-x grid lines correspond to meridians running north-south.
The projection is also constructed to ensure that the azimuth and grid bearing are equal.
Therefore a rhumb line, a course of constant azimuth on the sphere, becomes a straight
line on the projection.

On the transverse Mercator projections the situation is more complicated. The projec-
tion of the graticule is a set of complex curves which, in general, are not aligned to the
underlying Cartesian reference grid: the only exceptions are the equator and the central
meridian. As a result the constant-x grid lines do not run north-south and the azimuth is not
equal to the grid-bearing, instead it is equal to the angle between the projected meridian and
the projected line segment AB. The angle between the projected meridian and the constant-x
grid line is called the grid convergence. On large scale maps of restricted regions it is a
small angle but nonetheless important for high accuracy work. The OSGB 1:50000 map
sheets state the value of the grid convergence at each corner of the sheet.

1.7 Historical outline

Gerardus Mercator (1512–1594) did not develop the mathematics that we shall present
for “his” projection (NMS) in Chapter 2; moreover he had nothing at all to do with three
other projections that now carry his name—TMS, NME, TME. In 1569 he published his
map-chart entitled “Nova et aucta orbis terrae descriptio ad usum navigantium ementate
accommadata” which may be translated as “A new and enlarged description of the Earth
with corrections for use in navigation”. His explanation is given on the map-chart:

In this mapping of the world we have [desired] to spread out the surface of the globe
into a plane that the places should everywhere be properly located, not only with re-
spect to their true direction and distance from one another, but also in accordance with
their true longitude and latitude; and further, that the shape of the lands, as they appear
on the globe, shall be preserved as far as possible. For this there was needed a new
arrangement and placing of the meridians, so that they shall become parallels, for the
maps produced hereto by geographers are, on account of the curving and bending of
the meridians, unsuitable for navigation. Taking all this into consideration, we have
somewhat increased the degrees of latitude toward each pole, in proportion to the in-
crease of the parallels beyond the ratio they really have to the equator. (Full text is
available on Wikipedia at Mercator 1569 world map, Legend 3).

This is an admirably clear statement of his approach. In order that the meridians should
be perpendicular to the equator, and parallel to each other, it is first necessary to increase
the length of a parallel on the projection as one moves away from the equator. Since the

http://en.wikipedia.org/wiki/Mercator 1569 world map
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circumference of a parallel at latitude φ is 2πRcosφ it must be scaled up by a factor of secφ

so that it has the same length as the equator on the projection (2πR). Thus, to guarantee that
an azimuth is equal to its corresponding grid bearing, or equivalently rhumb lines project to
straight lines, it is necessary to increase the meridian scale at latitude φ by a factor of secφ .
This leads to a gradual increase in the spacing of the parallels on the projection as against
the uniform spacing of the equirectangular projection.

Exactly how Mercator produced his map is not known: he left no account of his method.
He was familiar with the writing of Pedro Nunes (Randles, 2000) who had showed that
rhumb lines are spirals from pole to pole on the sphere, and he had found means of marking
such rhumbs on his terrestial globe of 1541. It is possible that he employed mechanical
means, using templates, one for each of the principal rhumbs. He could have measured the
coordinates of points on a rhumb and transferred them to a plane chart with the parallels
adjusted so that the rhhumbs became straight lines. On the other hand his latitude scale is
fairly accurate and most writers assume that he had some means of calculating the spacings.
Ten such methods are discussed by Hollander (2005).

The first to publish an account of the construction of a Mercator chart was a Cambridge
professor of mathematics named Edward Wright 1558?–1615). His publication entitled
‘The correction of certain errors in navigation’ (Wright, 1599) discusses the errors of the
equirectangular projection and shows how the angles, at least, are correct in Mercator’s
chart and goes on to explain the construction of such a chart by using a table of secants. He
published a very fine chart based on accurate positions taken from a globe modelled by his
compatriot Emery Molyneux. For many years thereafter the charts were widely described
as Wright-Molyneux map projection.

In addition to his mathematical derivation of the projection Wright imagined a physical
construction:

Suppose a sphericall superficies with meridians, parallels, rumbes, and the whole hy-
drographical description drawne thereupon, to be inscribed into a concave cylinder,
their axes agreeing in one. Let this sphericall superficies swel like a bladder, (while
it is in blowing) equally always in every part thereof (that is, as much in longitude as
in latitude) till it apply, and join itself (round about and all alongst, also towards ei-
ther pole) unto the concave superficies of the cylinder: each parallel on this sphericall
superficies increasing successively from the equinoctial [equator] towards either pole,
until it come to be of equal diameter with the cylinder, and consequently the meridians
still wideening themselves, til they become so far distant every where each from other
as they are at the equinoctial. Thus it may most easily be understood, how a sphericall
superficies may (by extension) be made cylindrical, . . .

It is easy to see how this works. Mercator’s projection is constructed to preserve angles
by stretching meridians to compensate exactly for the streching of the parallels. The angle
preserving projection is conformal. Now consider Wright’s bladder: it must be infinitely ex-
tensible and able to withstand infinite pressure as it slides over the perfectly smooth cylinder.
The crucial phrase is “swel . . . equally always in every part thereof”. Therefore the tensions
over both the initial spherical surface and the final cylindrical surface are uniform, albeit
of very different magnitudes. This uniformity guarantees that a crossing of two lines on

http://en.wikipedia.org/wiki/Pedro Nunes
http://en.wikipedia.org/wiki/Edward Wright (mathematician)
http://en.wikipedia.org/wiki/Emery Molyneux
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the sphere will be at at exactly the same angle on the cylinder. Thus we have generated a
conformal projection from the sphere to the cylinder. And there is only one such conformal
projection.

The logarithm function was invented by John Napier in 1614 and numerical tables of
many logarithmic functions were soon readily available (although analytic Taylor expan-
sions of functions had to wait another hundred years). In the 1640s, another English math-
ematician called Henry Bond (1600–1678) stumbled on the numerical agreement between
Wright’s tables and those for ln[tan(θ)], as long as θ was identified with (φ/2+π/4). The
mathematical proof of the equivalence immediately became noted as an important problem
but it was nearly thirty years before it was solved by James Gregory (1638–1675), Isaac
Barrow (1630–1677) and Edmond Halley (1656–1742) acting independently. See Halley
(1696) These proofs eventually coalesced into direct integration of the secant function as
presented in Chapter 2. The modification of this integration for the ellipsoid (and NME) is
trivial.

Having given credit to Wright, Bond and others it is now believed the English math-
ematician Thomas Harriot (1560–1621) was possibly the first to calculate the spacings of
the Mercator projection. His unpublished works have had to await study until very recently.
They contain evidence of a method equivalent to that of Edward Wright and moreover he
seems to have devised a formula equivalent to the logarithmic tangent formula derived from
calculus almost one hundred years later. (Pepper, 1967; Lohne, 1965, 1979; Taylor and
Sadler, 1953; Stedall, 2000)

The transverse Mercator projection on the sphere was included in a set of seven new
projections published (Lambert, 1772) by the Swiss mathematician and cartographer, Jo-
hann Heinrich Lambert. As we shall see in Chapter 3, the derivation of this projection on
the sphere is a straightforward application of spherical trigonometry starting from the nor-
mal Mercator result. The generalisation to the ellipsoid was carried out by Carl Friedrich
Gauss (1777–1855) in connection with the survey of Hanover commenced in 1818. His
projection is conformal and preserves true scale on one meridian: this is the projection we
shall term TME.

Gauss left few details of his work and the most accessible account is that of Krüger
(1912). For this reason the transverse Mercator projection on the ellipsoid is often called
the Gauss–Krüger projection. Kruger developed two expressions for the TME projection,
one a power series in the longitude difference from a central meridian and a second using
a power series in the parameter which describes the flattening of the ellipsoid. The first of
these methods was extended to higher order by Lee (1945), and Redfearn (1948) in Britain
and by Thomas (1952) in the USA. Their results are used for the OSGB map series and
the UTM series respectively. (There are only sub-millimetre differences). It is this method
which is described in this article.

It should be noted that in addition to the representation of the projection by power series
approximations an exact solution was devised by E. H. Thompson and published by Lee
(1976). That solution and the second solution of Krüger are available in Karney (2011).

Finally, I give the abstract of the 1948 paper by Redfearn. The actual paper is highly

http://en.wikipedia.org/wiki/John Napier
http://en.wikipedia.org/wiki/James_Gregory_(mathematician)
http://en.wikipedia.org/wiki/Isaac Barrow
http://en.wikipedia.org/wiki/Isaac Barrow
http://en.wikipedia.org/wiki/Edmond Halley
http://en.wikipedia.org/wiki/Thomas Harriot
http://en.wikipedia.org/wiki/Johann Heinrich Lambert
http://en.wikipedia.org/wiki/Johann Heinrich Lambert
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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condensed (6 pages!) and although it is available (at a price) it will add nothing to the work
presented here.

The Transverse Mercator Projection, now in use for the new O.S. triangulation and
mapping of Great Britain, has been the subject of several recent articles in the Empire
Surpey Review. The formulae of the projection itself have been given by various writ-
ers, from Gauss, Schreiber and Jordan to Hristow, Tardi, Lee, Hotine and other—not,
it is to be regretted, with complete agreement, in all cases. For the purpose for which
these formulae have hitherto been employed, in zones of restricted width and in rela-
tively low latitudes, the completeness with which they were given was adequate, and
the omission of certain smaller terms, in the fourth and higher powers of the eccentric-
ity, was of no practical importance. In the case of the British grid, however, we have to
cover a zone which must be considered as having a total width of some ten to twelve
degrees of longitude at least, and extending to latitude 61N. This means, firstly, that
terms which have as their initial co-efficients the fourth and sixth powers of the longi-
tude will be of greater magnitude than usual, and secondly that the powers of tan are
likewise greatly increased. Lastly, an inspection of the formulae (as hitherto available)
shows a definite tendency for the numerical co-efficients of terms to increase as the
terms themselves decrease.

1.8 Chapter outlines

Chapter 2 starts by describing by discussing angles and distances on a sphere of radius
equal to the mean radius of the WGA84 ellipsoid. We consider the class of all ‘normal’
(equatorial) cylindric projections onto a cylinder tangential to the equator of a sphere and
compare and contrast four important examples. The Mercator projection on the sphere
(NMS) is defined as the single member of the class which is such that an azimuth on the
sphere and its corresponding grid bearing on the map are equal. This property of conformal-
ity is then used to derive the projection formulae by a comparison of infinitesimal elements
on the sphere and the plane. Rhumb lines and their properties are defined in detail and
contrasted with great-circles. Secant projections are introduced to control scale variation.

Chapter 3 discusses the transverse Mercator projection on the sphere (TMS). In this case
we are considering a projection onto a cylinder which is tangential to the sphere on a great
circle formed by a meridian and its continuation, e.g. the meridian at 21◦E and 159◦W.
These projections are rather unusual when applied to the whole globe but in practice we
intend to apply them to a narrow strip on either side of the meridian of tangency which is
then termed the central meridian of the transverse projection. The crux is that by considering
a large number of such projection strips we can cover the whole sphere (except near the
poles) at high accuracy. The derivation of the projection formulae is a straightforward
exercise in spherical trigonometry. An important new feature is that corresponding azimuths
and grid bearings are not equal (even though the transformation remains conformal) and
we define their difference as the grid convergence. Finally we present low order series
expansions for the projection formulae.
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Chapter 4 is the crunch. Our ultimate aim is to derive the projection equations for the
transverse Mercator projection on the ellipsoid (TME) in the form of series expansions.
The only satisfactory way of obtaining these results is by using a small amount of complex
variable theory. This method is complicated by both the geometrical problems of the ellip-
soid and also by the fact that we need to carry the series to many terms in order to achieve the
required accuracy. Thus, for purely pedagogical reasons, in this chapter we use the complex
variable methods to derive the low order series solutions for TMS (derived in Chapter 3)
from the standard solution for NMS. That it works is encouragement for proceeding with
the major problem of constructing the TME projections from NME.

Chapter 5 derives the properties of the ellipse and ellipsoid. In particular we introduce
(a) the principal curvatures in the meridian plane and its principal normal plane, (b) the
distinction between geocentric, geodetic and reduced latitudes, (c) the distance metric on
the ellipsoid and (d) the series expansion which gives the distance along the meridian as a
function of latitude, (e) auxiliary latitudes and double projections.

Chapter 6 derives the normal Mercator projection (NME) on the ellipsoid. The method
is a simple generalization of the methods used in Chapter 2 the only difference being in
the different form of the infinitesimal distance element on the ellipsoid. The results for
the projection equations are obtained in non-trivial closed forms. The inversion of these
formulae is not possible in closed form and we must revert to Taylor series expansions.

Chapter 7 uses the techniques developed in Chapter 4 to derive the transverse Mercator
projection on the ellipsoid (TME) from that of NME. This derivation requires distinctly
heavy algebraic manipulation to achieve our main result, the Redfearn formulae for TME.

Chapter 8 applies the general results of Chapter 7 to two important cases, namely the
Universal Transverse Mercator (UTM) and the National Grid of Great Britain (NGGB). The
former is actually a set of 60 TME projections each covering 6 degrees of longitude between
the latitudes of 80◦S and 84◦N and the latter is a single projection over approximately 10
degrees of longitude centred on 2◦W and covering the latitudes between 50◦N and 60◦N. We
then discuss the variation of scale and grid convergence over the regions of the projection
and also assess the accuracy of the TME formulae by examining the terms of the series one
by one. We find that for practical purposes some terms may be dropped, as indeed they are
in both the UTM and NGGB formulae. Finally the projection formulae are rewritten in the
completely different notation used in the OSGB published formulae (see bibliography).

Appendices There are eight mathematical appendices. Some of these were developed for
teaching purposes so they are more general in nature.

A Curvature in two and three dimensions.

B Inversion of series by Lagrange expansions.

C Plane Trigonometry.

D Spherical Trigonometry.

E Series expansions.

F Calculus of variations.

G Complex variable theory.

H Maxima code.
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Chapter2
Normal Mercator on the sphere: NMS

Coordinates and distance on the sphere. Infinitesimal elements and the metric.
Normal cylindrical projection. Angle transformations and scale factors. Four
examples of normal cylindrical projections. Derivation of the Mercator pro-
jection. Rhumb lines and loxodromes. Distances on the Mercator projection.
Secant (modified) normal cylindrical projections.

2.1 Coordinates and distance on the sphere

Basic definitions

The intersection of a plane through the centre of the
(spherical) Earth with its surface is a great circle: other
planes intersect the surface in small circles. The inter-
sections of the rotation axis of the Earth with its surface
define the poles N and S. The meridians are those lines
joining the poles which are defined by the intersection
of planes through the rotation axis with the surface: the
meridians are great circles. The parallels are defined
by the intersections of planes normal to the rotation axis
with the surface and the equator is the special case when
the plane is through the centre: the equator is a great
circle and other parallels are small circles.

P M
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X
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Y
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Figure 2.1

The position of a point P on the sphere is denoted by an ordered pair (φ ,λ ) of latitude
and longitude values. Latitude is the angle between the normal at P and the equatorial
plane: it is constrained to the interval of [−90◦, 90◦] or [−π/2, π/2] radians. On the sphere
any normal to the surface passes through the centre. Longitude is the angle between the
meridian through P and an arbitrarily chosen reference meridian (established at Greenwich
by the Prime Meridian Conference (1884)): it may be defined on either of the intervals
[−180◦, 180◦] or [0◦, 360◦] with radian equivalents [−π, π] and [0, 2π] radians respectively.
The meridians (λ constant), the equator (φ = 0) and the small circles (φ constant, non-zero)
constitute the graticule on the sphere. The figure shows a second point Q with coordinates
(φ + δφ ,λ + δλ ), the meridians through P and Q, arcs of parallels PM, KQ and the great
circle through the points P and Q.
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Geographical coordinates are normally given as degrees, minutes and decimal seconds
or in degrees and decimal minutes or simply in decimal degrees. In equations, however,
all angles must be in radians—except where explicitly stated. The unit mil, such that
6400mil=2π radians=360◦, is sometimes used for small angles, in particular the grid con-
vergence defined in Section 3.6. The relations between these units are as follows:

1 rad = 57◦.29578 = 57◦ 17′ 44′′.8 = 3437′.75 = 206264′′.8 = 1018.6mil

1◦ = 0.0174533 rad, 1′ = 0.000291 rad = 0.296 mil, 1′′ = 0.00000485 rad. (2.1)

1mil = 0.000982 rad = 0◦.0563 = 3′.37 = 202′′.

Radius of the sphere

The Earth is more accurately represented by an ellipsoid (Chapter 5) with semi-major axis
(equatorial radius), a, and semi-minor axis b (often mistakenly called the polar radius) and
there are several choices for the radius, R, of a sphere approximating such an ellipsoid. (The
notation R will be applied to both the full size approximation or to the sphere reduced by
the representative fraction, RF). The most important possibilities are:

• the major axis of the ellipsoid, a,

• the tri-axial arithmetic mean, (a+a+b)/3) ,

• radius of equal area sphere, (a/
√

2)
[
1+ e−1(1− e2) tanh−1 e

]1/2
, (Section 5.13),

• radius of equal volume sphere, (a2b)1/3.

For other possible choices see Maling 1992 (page 76) and Wikipedia Earth radius For WGS
(1984) the values to within 10 cm. are

• a = 6,378,137.0m, b = 6,356,752.3m,

• triaxial mean radius: 6,371,008.8m,

• equal volume radius: 6,371,000.8m,

• equal area radius: 6,371,007.2m.

In practical calculations with a spherical model it is acceptable to take the mean radius as
R = 6371km (3958 miles). For example this is the value taken by the FAI (International
Air Federation). No higher accuracy is required since we must use an ellipsoidal model for
more precise calculations. For this radius the circumference is 40,030km (24,868 miles)
and the meridional quadrant (pole to equator) is 10,007km (6217 miles). One degree of
latitude corresponds to 111.2km. and one minute of latitude corresponds to 1853m.

http://en.wikipedia.org/wiki/Earth radius
http://www.fai.org/distance_calculation/
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Cartesian coordinates

If the radius of a parallel circle is p(φ) = Rcosφ the Cartesian coordinates of P are

X = p(φ)cosλ = Rcosφ cosλ ,

Y = p(φ)sinλ = Rcosφ sinλ ,

Z = Rsinφ , (2.2)

with inverse relations

φ = arctan
(

Z
p

)
= arctan

(
Z√

X2 +Y 2

)
, λ = arctan

(
Y
X

)
. (2.3)

For a point at a height h above the surface at P we simply replace R by R+ h in the direct
transformations: the inverse relations for φ and λ are unchanged but they are supplemented
with the equation

h =
√

X2 +Y 2 +Z2−R. (2.4)

The unit vector, n, from the centre of the sphere toward a point on the surface is

n = (cosφ cosλ , cosφ sinλ , sinφ). (2.5)

Distances on the sphere

In Figure 2.1 the distance PQ in three dimensions is unique but the distance on the surface of
the sphere depends on the path taken between the points. For two points in general position
the important distances are along a great circle, which is the shortest distance, or along
a rhumb line which, by definition, intersects meridians at constant azimuth. (Rhumb line
distances are discussed in Section 2.5). For example, if the points are at the same latitude we
can calculate the rhumb distance between them by measuring along the parallel circle; the
shorter great circle distance deviates north (south) in the northern (southern) hemisphere.

The only trivially calculated distances are those measured along meridians or parallels:
on the meridian in Figure 2.1 we have PK = Rδφ and on the parallel PM = p(φ)δλ =
Rcosφ δλ (where δφ and λφ are in radians). For widely separated points these become
PK = R(φ2−φ1) and PM = Rcosφ (λ2−λ1). It is useful to have some feel for the distances
on meridians and parallels on the sphere (radius 6371km). To the nearest metre:

radius (m) circumference 1◦ 1′ 1′′

meridian 6,371,008 40,030,173 111,195 1853 31

equator 6,371,008 40,030,173 111,195 1853 31

parallel at 15◦ 6,153,921 38,666,178 107,406 1790 30

parallel at 30◦ 5,517,454 34,667,147 96,297 1604 27

parallel at 45◦ 4,504,983 28,305,607 78,626 1310 22

parallel at 60◦ 3,185,504 20,015,096 55,597 927 15

parallel at 75◦ 1,648,938 10,360,571 28,779 480 8

Table 2.1
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One minute of arc on the meridian (of a spherical Earth) was the original definition of
the nautical mile (nml). On the ellipsoid this definition of the nautical mile would depend
on latitude and the choice of ellipsoid therefore, to avoid discrepancies, the nautical mile is
now defined by international treaty as exactly 1852m (1.151 miles). The original definition
remains a good rule of thumb for approximate calculations but note that it corresponds to a
spherical Earth model of radius equal to 6366.7km rather than the value of 6371km which
we used for the previous table.

The great circle distance, g12 between two points in general position is R times the
angle (in radians) which the circular arc between them subtends at the centre. That angle is
defined by the two unit vectors giving the positions of the end points.

n1 = (cosφ1 cosλ1, cosφ1 sinλ1, sinφ1),

n2 = (cosφ2 cosλ2, cosφ2 sinλ2, sinφ2),

n1·n2 = cosφ1 cosφ2 cos(λ2−λ1)+ sinφ1 sinφ2

g12 = R cos−1 [cosφ1 cosφ2 cos(λ2−λ1)+ sinφ1 sinφ2] . (2.6)

This formula is not well conditioned at short distances and alternative forms are preferable.
(See Wikipedia Great-circle distance). There are a number of great circle distance calcula-
tors available on the web. The FAI use the mean sphere (and WGS84). The Ed Williams’
Aviation page has a more comprehensive list of Earth models. The csgnetwork uses a model
a model with radius 6366.7km: it may also be used to calculate way point values.

Infinitesimal elements

In practical terms an element of area on the sphere can be said to be infinitesimal if, for
a given measurement accuracy, we cannot distinguish deviations from the plane. To be
specific, consider the spherical element PMQK shown in Figure 2.1, and in enlarged form
in Figure 2.2a, where the solid lines PK, MQ, PQ are arcs of great circles, the solid

Figure 2.2

lines PM and KQ are arcs of parallel circles and the dashed lines are straight lines in
three dimensions. From Figure 2.2b, for θ(rad)� 1 the arc–chord difference is

arc(AB)−AB = Rθ−2Rsin
θ

2
= Rθ−2R

(
θ

2
− 1

3!
θ 3

8
+ · · ·

)
=

Rθ 3

24
+O(Rθ

5). (2.7)

Suppose the accuracy of measurement is 1m. Setting θ = δφ we see that the difference
between the arc and chord PK will be less than 1m, and hence undetectable by measurement,

http://en.wikipedia.org/wiki/Great-circle_distance
http://www.fai.org/distance_calculation/
http://williams.best.vwh.net/gccalc.htm
http://williams.best.vwh.net/gccalc.htm
http://www.csgnetwork.com/marinegrcircalc.html
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if we take δφ < (24/R)1/3 ≈ 0.0155rad, corresponding to 53′ or a meridian arc length of
99km. Similarly, setting θ = δλ and replacing R by p = Rcosφ , the difference between the
arc and chord PM at a latitude of 45◦ (where cosφ = 1/

√
2) is less than 1m if δλ is less

than 59′, corresponding to an arc length of 78km on that parallel. If we take our limiting
accuracy to be 1mm the above values become 9.9km and 7.8km. A surface element of
this order or smaller can therefore be well approximated by a planar element which can be
mapped without need for projection.

Figure 2.3

We now prove that the small surface element PKQM may be well approximated by
a rectangular element. Figure 2.3a shows the planar trapezium which approximates the
surface element. Since PM = Rcosφ δλ we have

KQ−PM = δφ
d
dφ

(Rcosφ δλ ) =−Rsinφ δλ δφ . (2.8)

Now the distance PK ≈ Rδφ so the small angle ε , called spherical convergence (note [1] )
is given by

ε ≈ sinε =
PM−KQ

2
1

PK
=

1
2

sinφ δλ . (2.9)

Clearly ε becomes arbitrarily small as Q approaches P and the infinitesimal element is
arbitrarily close to the rectangle with sides Rδφ and Rcosφ δλ shown in Figure 2.3b. The
planar geometry of the right angled triangle PQM in that figure gives two important results
for the azimuth α and distance PQ:

tanα = lim
Q→P

Rcosφ δλ

Rδφ
= cosφ

dλ

dφ
, (2.10)

δ s2 = PQ2 = R2
δφ

2 +R2 cos2
φ δλ

2. (2.11)

The latter result also follows directly from equations (2.2):

δX =−(Rsinφ cosλ )δφ − (Rcosφ sinλ )δλ

δY =−(Rsinφ sinλ )δφ +(Rcosφ cosλ )δλ

δZ = (Rcosφ)δφ , (2.12)

δ s2 = δX2 +δY 2 +δZ2,

δ s2 = R2 cos2
φ δλ

2 +R2
δφ

2. (2.13)

This expression defines the metric on the surface of the sphere.
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2.2 Normal (equatorial) cylindrical projections

The normal, or equatorial, aspect of cylindrical projections of a (reduced) sphere of ra-
dius R are defined on a cylinder of radius R which is tangential to the sphere on the equator
as shown in Figure (2.4). (When the cylinder is tangential to a meridian the aspect is said
to be transverse: for other orientations the aspect is oblique.) The axis of the cylinder
coincides with the polar diameter NS and the planes through this axis intersect the sphere
in its meridians and intersect the cylinder in its generators.

Figure 2.4: The normal cylindrical projection

The projection takes points on the meridian to points on the corresponding generator of
the cylinder according to some formula which is NOT usually a geometric construction—in
particular the Mercator projection is not generated by a literal projection from the centre (as
stated on many web sites): see the next section. The cylinder is then cut along a generator
which has been taken at λ = 180◦ in Figure 2.4 but could have been chosen at any longitude.
Finally the cylinder is unrolled to form the flat map. Note that the last step of unrolling intro-
duces no further distortions. Axes on the map are chosen with the x-axis along the equator
and the y-axis coincident with one particular generator, taken as the Greenwich meridian
(λ = 0) in Figure (2.4). Clearly the meridians on the sphere map into lines of constant x
on the projection so the x-equation of the projection is simply x = Rλ (radians). For the
y-equation of the projection we admit any “sensible” function of φ , irrespective of whether
or not there is a geometrical interpretation. Therefore normal cylindrical projections are
defined by (note [2] )

x(λ ,φ) = Rλ , (2.14)

y(λ ,φ) = R f (φ), (2.15)

where λ and φ are in radians. With transformations of this form we see that the parallels on
the sphere (φ constant) project into lines of constant y so that the orthogonal intersections
of meridians and parallels of the graticule on the sphere are transformed into orthogonal
intersections on the map projection. The spacing of the meridians on the projection is
uniform but the spacing of the parallels depends on the choice of the function f (φ).

Note that all normal cylindrical projections have singular points: the points N, S at



Chapter 2. Normal Mercator on the sphere: NMS 27

the poles transform into lines given by y = R f (±π/2). On the sphere meridians intersect
at the poles but on normal cylindrical projections meridians do not intersect. All other
points of the sphere are non-singular points. Of course there is nothing special about the
poles; if we use oblique or transverse aspects the geographic poles are regular points and
other points become singular—the singularities at the poles are artifacts of the coordinate
transformations. For example we shall find that the transverse Mercator projection has
singular points on the equator.

The equations (2.14, 2.15) define a projection to a map of constant width, W , equal to
the length of the equator, 2πR. Since the true length of a parallel is 2πRcosφ , the scale
factor, the map projection length divided by the corresponding true length (on the reduced
sphere), along a parallel is equal to secφ : this factor increases from 1 on the equator to
infinity at the poles. Note that this statement about scale on a parallel applies to any normal
cylindrical projection but the scale on the meridians, and other lines, will depend on f (φ).

The actual printed projection in Figure 2.4 has a value of W approximately equal to
8cm, corresponding to R = 1.27cm and an RF (representative fraction) of approximately 1
over 500 million or 1:500M.

Angle transformations on normal cylindrical projections: conformality

In Figure 2.5 we compare the rectangular infinitesimal element PMQK on the sphere with
the corresponding rectangular element P′M′Q′K′ on the projection. We define the angle α

on the sphere to be the azimuth and the corresponding angle β on the projection to be the
grid bearing. This distinction in terminology is not widespread.

Figure 2.5

The geometry of the rectangular elements gives

(a) tanα =
Rcosφ δλ

Rδφ
and (b) tanβ =

δx
δy

=
δλ

f ′(φ)δφ
, (2.16)

so that
tanβ =

secφ

f ′(φ)
tanα. (2.17)

If α=β it follows that the angle between any two azimuths is equal to the angle between
the corresponding grid bearings. In this case we say that the projection is conformal. The
condition for this is that f ′(φ) = secφ : this is the basis for the derivation of the Mercator
projection given in Section 2.4.
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The point scale factor

Define µ , the point scale at the point P′ on the projection by

µ = lim
Q→P

distance P′Q′ on projection
distance PQ on sphere

(2.18)

= lim
Q→P

√
δx2 +δy2√

R2 cos2φ δλ 2 +R2 δφ 2
. (2.19)

Point scale factors on meridians (h) and parallels (k)

When PQ lies along the meridian δλ and δx are zero
and y = R f (φ). The scale factor in this case is conven-
tionally denoted by h. Therefore (2.19) gives

meridian scale: h(φ) = f ′(φ). (2.20)

On a parallel δφ and δy are zero and δx = Rδλ . The
scale factor in this case is conventionally denoted by k.

parallel scale: k(φ) = secφ . (2.21)

The parallel scale factor, plotted alongside, is the same
for all normal cylindrical projections.

φ

k(φ)

0 30 60 90
0

3

6

9

12

Figure 2.6
Point scale factor in a general direction: isotropy of scale

Equations (2.16) give δφ=cotα cosφ δλ and δy=cotβ δx. Therefore equation (2.19)
gives the scale factor at azimuth α as

µα(φ) = lim
Q→P

√
δx2(1+ cot2β )√

R2 cos2φ δλ 2(1+ cot2α)
, (2.22)

= secφ

[
sinα

sinβ (α,φ)

]
, (2.23)

where β (α,φ) can be found from Equation (2.17). For a conformal projection with α = β

the general scale factor is equal to secφ , independent of α: it is isotropic.

Area scale factor The area scale is obtained by comparing the areas of the two rectangles
PMQK and P′M′Q′K′. Denoting this scale factor by µA and using (2.20) and (2.21).

µA(φ) = lim
Q→P

δxδy
(Rcosφ δλ )(Rδφ)

= secφ f ′(φ) = hk. (2.24)

NB. All of these scale factors apply only to the normal cylindrical projections. They are
independent of λ , a reflection of the rotational symmetry.
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2.3 Four examples of normal cylindrical projections

Consider the following projections of the unit sphere, R = 1:

1. The equirectangular (or equidistant or Plate Carrée) projection: f (φ) = φ .

2. Lambert’s equal area projection: f (φ) = sinφ .

3. Mercator’s projection: f (φ) = ln [tan(φ/2+π/4)]. (Derived in Section 2.4).

4. The central cylindrical projection: f (φ) = tanφ .

The following table summarizes the properties of these projections.

equirectangular equal-area Mercator central
x λ λ λ λ

x-range (−π, π) (−π, π) (−π, π) (−π, π)

y = f (φ ) φ sinφ ln[tan(φ/2+π/4)] tanφ

y-range (−π/2, π/2) (−1, 1) (−∞,∞) (−∞,∞)

f ′(φ ) 1 cosφ secφ sec2 φ

meridian h 1 cosφ secφ sec2 φ

parallel k secφ secφ secφ secφ

equator k 1 1 1 1
area (hk) secφ 1 sec2 φ sec3 φ

(2.17): tanβ = secφ tanα sec2 φ tanα tanα cosφ tanα

aspect ratio 2 π 0 0
Figure 2.7 Figure 2.8 Figure 2.10 Figure 2.11

Table 2.2

The four projections are shown in Figures (2.7–2.11). The maps all have the same
x-range of (−π, π) (on the unit sphere) but varying y-ranges. They are portrayed on the
printed page with a width of 12cm corresponding to an RF of approximately 1/300M. Each
of the projections is annotated on the right with a chequered column corresponding to 5◦×5◦

regions on the sphere. The width of these rectangles is the same for all projections but their
height depends on f (φ).

On the equator φ = 0 so that both cosφ and secφ are equal to unity. All the scale
factors are unity and equation (2.17) shows that α = β where any line segment crosses the
equator. The projections are perfectly well behaved and quite suitable for accurate large
scale mapping close to the equator: both relative distance and shape are well preserved in
a comparison with their actual representations on the sphere. Look at an actual globe and
compare all four projections in locations such as Africa, the Caribbean and Indonesia.

Away from the equator all the projections have a parallel scale factor equal to secφ :
a necessary consequence of the attempt to project the spherical surface onto a rectangular
domain. This factor increases to infinity as φ → ±π/2 so that the poles of the sphere
are stretched out to lines across the full width of the projection, at finite or infinite values



Chapter 2. Normal Mercator on the sphere: NMS 30

of the y-coordinate. The poles are singular points of the projection where the one-to-one
correspondence between sphere and projection breaks down. The horizontal stretching at
high latitudes is leads to distortions in all four projections when they are compared with an
actual globe. The shape of Alaska is good measure of this distortion. Only the Mercator
projection preserves good local shape.

Relative area is another good criterion in assessing the projections. On the globe the
area of Greenland is 1/8 that of South America and 1/13 that of Africa. Only the Lambert
equal-area projection preserves these values.

−π/2

−1

y=0

1

π/2

−π −π/2 x=0 π/2 π

-90

-60

-30

φ=0

30

60

90
-180 -90 λ=0 90 180

Figure 2.7: Equirectangular projection (R=1)

The equirectangular projection: f (φ) = φ

This projection, the simplest of all, has been in use since the time of Ptolemy (83?–161AD)
who attributes its first use to Marinus (Snyder, 1993, page 6). The meridians and parallels
of latitude are equidistant parallel lines intersecting at right angles. (It becomes a rectan-
gular grid when applied to a secant projection; see Section 2.7). The overall aspect ratio
(width:height) is 2. The projection is also known as the ‘Plate Carrée’, the Plane Chart
or the equidistant projection. The projection was very important in the sixteenth century
because it was used to underpin the new portolans and charts which were being extended
to cover ocean sailing as against the local European sailing of earlier times. The projection
is still useful for many applications where the metric properties are irrelevant, for example
index map sheets for all sorts of topics.

Like all normal cylindrical projections the equirectangular is well behaved near the
equator but as we move away from the equator the failings of its simplicity become more
pronounced. Note first Equation 2.17 reduces to tanα = cosφ tanβ so that α 6= β unless
α = β = 0 or π/2. The projection is certainly not conformal and the attractive compass
roses shown on early charts give incorrect values for the corresponding azimuths on the
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sphere. This may be of no concern for short journeys in equatorial regions but it is very
significant on long oceanic voyages and at extreme latitudes, even if the sailors of the six-
teenth century were aware of this deficiency and had evolved rules of thumb to compen-
sate. Note that the errors are not small: if we take β = 45◦ and a latitude φ = 30◦ then
α = arctan

√
3/2 = 40.9◦ but at latitude φ = 60◦ and α = arctan0.5 = 26.6◦

The alternative name “equidistant” is also misleading because the scale factor is uni-
form, equal to 1, only on the equator and the meridians where the true distance is equal to
the ruler distance divided by the RF. On a parallel we must first divide by a factor of secφ .
Along any other line in the projection the scale factor depends on both the grid bearing
and the latitude: from Equation (2.23) we have µ = secφ sinα(β ,φ)cosecβ where, from
Equation (2.17), α = arctan [tanβ cosφ ]. It is then possible to relate elements of length, ds′

on the projection and ds on the sphere, and even construct an integral for finite segments
but there is basically no point in doing so since the path on the sphere corresponding to
this straight line on the projection is neither a rhumb nor a great circle. It can’t be a rhumb
because the azimuth, α is not constant. It is, moreover, a curve on the sphere which, if we
assume that it starts at φ = λ = 0, attains the pole. For example if the line on the projection
is φ = 3λ it reaches the pole on the sphere when λ = π/6. But the only great circles through
the pole are the meridians so the path on the sphere cannot be a great circle. For the true
great circle distance between general points on the equirectangular projection we must use
the standard geodesic formulae of equation 2.6.
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Figure 2.8: Lambert equal area projection (R=1)

Lambert’s equal area projection: f (φ) = sinφ

This projection (Lambert, 1772) is constructed to guarantee the equality of corresponding
area elements on the (reduced) sphere and the projection. Since the parallel scale factor is
still as k = secφ we must have a scale factor on the meridian given by h = cosφ . It follows
from Equation eq:02nms:20 that f (φ) = sinφ . Thus the ratio of the area of Greenland to
that of Africa is correctly portrayed (as 1/13). In common with all cylindrical projections it
is well behaved with good shapes and distances near the equator but it is distorted at high
latitudes: look at look at Alaska for example. The projection is not conformal.

There are problems with angles, exactly as for the equirectangular projection. We now
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have tanα = cos2 φ tanβ so that if we again take β = 45◦ and a latitude φ = 30◦ then
α = arctan0.75 = 36.9◦ and at latitude φ = 60◦ we have α = arctan0.25 = 14.0◦. The grid
bearings are completely unreliable.

Once again, interpreting ruler distances on the projection is trivial only on the equator
and parallels (where we must first divide by a factor of secφ ). This time a ruler distance
on the meridian has no simple interpretation because of the of the varying scale factor
h = cosφ . However if we measure the ruler distances of two points on a meridian from
the equator, say y1 and y2, not just their separation, we can then use y = sinφ to find the
corresponding latitudes, φ1 and φ2: the length y2− y1 then corresponds to a distance on the
sphere equal to R(φ2− φ1). On oblique lines of the projection we have exactly the same
difficulties that we encountered with the equirectangular projection.

The projection is one of the few which admits of a geometric
interpretation because y = Rsinφ is simply the distance NP′

of a point P at latitude φ above the equatorial plane. P is pro-
jected from the sphere to cylinder along the line KPP′ parallel
to the equatorial plane drawn from the axis of the sphere—not
projected from the origin. Thus any narrow (in longitude) strip
of the map is basically the view of a classroom globe from a
distant side position. Figure 2.9

Mercator’s projection: f (φ) = ln[tan(φ/2+π/4)]

Figure 2.10 shows Mercator’s projection. Since f (π/2) = ∞ the projection extends to in-
finity in the y direction and the map must be truncated at an arbitrarily chosen latitude.
Here we have chosen φ = ±85.051◦ so that the aspect ratio is equal to 1. Truncation at
these high latitudes emphasizes the great distortion near the poles—witness the diverging
area of Antarctica and Greenland as big as Africa. Note that the original (Mercator, 1569)
projection was truncated asymmetrically and as a result Europe, already at a larger scale
than Africa, moved nearer to the centre: a source of controversy in the twentieth century
(Monmonier, 2004).

The fundamental property of the Mercator projection is that it is conformal, i.e. it is an
angle preserving projection. This follows from equation (2.17) since f ′(φ) = secφ implies
that α = β . One important corollary is that a rhumb line on the sphere, which crosses the
converging meridians on the sphere at a constant angle α , projects into a straight line of
constant grid bearing β on the projection where the meridians are parallel verticals. This is
discussed more fully in Section 2.5.

Conformality implies isotropy of scale: meridian scale (h), parallel scale (k) and gen-
eral scale (µα ) are all equal to secφ in the Mercator projection. Therefore a small region
of the sphere is projected with very little change of shape, hence the use of the term ortho-
morphic projection, (greek: right shape). Witness the realistic shape of small islands far
from the equator, for example Iceland or Great Britain: larger regions such as Greenland or
Antarctica are distorted because the scale factor changes markedly over their extent.
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Figure 2.10: Mercator projection truncated at 83.05◦(R=1)

The words conformality and orthomorphism are often used interchangeably: this is
misleading. Conformality is an exact local (point) property: the angle between two lines
intersecting at a point on the sphere is the same on the projection. Orthomorphism is an
approximate non-local property because the shape of small elements is preserved only to
the extent that the latitude variation of scale is undetectable: this depends on the accuracy
of measurement. Conformality and low scale distortion near the equator, where secφ is
approximately unity, means that the Mercator projection is suitable for accurate large scale
mapping near the equator. This is discussed more quantitatively in Section 2.7. It is quite
inappropriate for small scale projections of the world, or large regions of the world, oceanic
charts excepted.

Ruler distances on the equator and parallels can be simply related to true distances, as in
the previous projections, but there are no simple interpretations for ruler distances of other
lines on the projection. Since straight lines on the projection correspond to rhumb lines
these distances are important and we shall return to their calculation in Section 2.6.
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Central cylindric projection: f (φ) = tanφ
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Figure 2.11: Central cylindrical projection truncated at 72◦(R=1)

The only reason for including the central cylindric projec-
tion, a direct projection from the centre of the sphere with
y = NP′ = R tanφ , is that it is often often claimed to show the
construction of the Mercator projection. This is of course com-
pletely wrong: the Mercator projection is NOT constructed in
this way. The projection is shown truncated at 72.34◦ to give
unit aspect ratio. The central projection is completely lacking
in any virtues and it has never been used for any practical map-
ping. We shall not consider it further.

Figure 2.12
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2.4 The normal Mercator projection

Derivation of the Mercator projection

The generic function f (φ) will be replaced by ψ(φ) for the normal Mercator projection.
The condition that the projection is conformal, α = β , follows from Equation (2.17):

ψ
′(φ) =

dψ

dφ
= secφ , (2.25)

and therefore
ψ(φ) =

∫
φ

0
secφ dφ , (2.26)

choosing a lower limit such that y(0) = Rψ(0) = 0. The integrand may be rewritten using

cosφ = sin(φ +π/2)

= 2sin(φ/2+π/4)cos(φ/2+π/4)

= 2tan(φ/2+π/4)cos2 (φ/2+π/4)

so that (note [3] )

y = Rψ(φ) =
R
2

∫
φ

0

sec2 (φ/2+π/4)
tan(φ/2+π/4)

dφ = R ln
[

tan
(

φ

2
+

π

4

)]
. (2.27)

Therefore the Mercator projection in normal (equatorial) aspect is

x = Rλ

y = Rψ(φ)
ψ(φ) = ln

[
tan
(

φ

2
+

π

4

)]
(2.28)

The following table gives the value of ψ(φ) at some selected latitudes. Note that since
tan(−φ/2+π/4) = cot(φ/2+π/4) we must have ψ(−φ) =−ψ(φ).

φ ψ(φ) φ ψ(φ) φ ψ(φ)

0◦ 0.00 40◦ 0.76 74.6◦ 2

5◦ 0.09 45◦ 0.88 75◦ 2.03

10◦ 0.18 49.6◦ 1 80◦ 2.44

15◦ 0.26 50◦ 1.01 84.3◦ 3

20◦ 0.36 55◦ 1.15 85◦ 3.13

25◦ 0.45 60◦ 1.32 85.05◦ π

30◦ 0.55 65◦ 1.51 89◦ 4.74

35◦ 0.65 70◦ 1.73 90◦ ∞

φ

ψ(φ)
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Figure 2.13
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Mercator parameter and isometric latitude

The function ψ(φ) which occurs in the expression for the y-coordinate in the Mercator pro-
jection is of importance in much that follows. We shall call it the Mercator parameter: this
is not standard usage although the term Mercator latitude was suggested by Lee (1946a).
In advanced texts, such Snyder (1987), it is called the isometric latitude. But beware; other
authors (see Adams, 1921) use the term for a different, but related, function. Note, too, that
the symbol ψ is not universal: Lee (1945) and Redfearn (1948) use χ , Maling (1992) use q
and so on.

The term isometric latitude arises because the metric can be written in terms of λ and ψ

as ds2 =R2 cos2φ(dλ
2+dψ2). The coefficients in the metric are now both equal to R2 cos2φ

so that equal increments of λ and ψ correspond to the same linear displacements (at the
latitude concerned).

Having urged care with notation we must flag a small problem in notation. When we
define the Mercator projection on the ellipsoid (NME in Chapter 6) we must define the
Mercator parameter ψ in a slightly different way, but such that it reduces to (2.28) as the
eccentricity e tends to zero. It would therefore have been natural to define the Mercator pa-
rameter on the sphere as ψ0. We have not done this, assuming that the correct interpretation
will be obvious from the context.

Alternative forms of the Mercator parameter

The Mercator parameter can be cast into many forms which may be useful at times; here
we present five such. Consider the argument of the logarithm in (2.28):

tan(φ/2+π/4) =
1+ tan(φ/2)
1− tan(φ/2)

=
cos(φ/2)+ sin(φ/2)
cos(φ/2)− sin(φ/2)

=
(cos(φ/2)+ sin(φ/2))2

cos2(φ/2)− sin2(φ/2)
=

1+ sinφ

cosφ
= secφ + tanφ . (2.29)

Hence
ψ(φ) = ln[secφ + tanφ ]. (2.30)

Rearrange the penultimate term in (2.29):

1+ sinφ

cosφ
=

{
(1+ sinφ)2

1− sin2
φ

}1/2

=

{
1+ sinφ

1− sinφ

}1/2

.

Therefore

ψ(φ) =
1
2

ln
[

1+ sinφ

1− sinφ

]
. (2.31)

Exponentiate each side of (2.30) and then invert:

eψ = secφ + tanφ ,

e−ψ = secφ − tanφ ,
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so that

2sinhψ = eψ − e−ψ = 2tanφ ,
and therefore

(a) sinhψ = tanφ , (b) sechψ = cosφ , (c) tanhψ = sinφ , (2.32)

from which we obtain further variants for ψ(φ):

ψ = sinh−1 tanφ = sech−1 cosφ = cosh−1 secφ = tanh−1 sinφ . (2.33)

Inverse transformations and inverse scale factor

The inverse transformation for λ is trivial: λ = x/R (if λ0 = 0). To find φ first set ψ = y/R
and use the inverse of any of the expressions for ψ given above. For example:

φ = 2tan−1 eψ − π

2
= sin−1 tanhψ = tan−1 sinhψ = gdψ, ψ =

y
R

(2.34)

where we have introduced the gudermannian function gd defined below. (It may be recast
into many forms; see appendices at C.59, G.24 and web Weisstein, 2012):

gd(x) =
∫ x

0
sechθ dθ = tan−1 sinhx, gd−1(x) =

∫ x

0
secθ dθ = sinh−1 tanx. (2.35)

The scale factor can also be considered as a function of the coordinates on the projection.
Using Equation (2.32b) we have

k(x,y) = coshψ = cosh(y/a). (2.36)

2.5 Rhumb lines and loxodromes

Rhumb lines were first discussed in the sixteenth century by Pedro Nunes as curves of
constant azimuth which spiralled from pole to pole. The more academic word loxodrome
(Greek loxos: oblique + dromos: running) appeared early in the seventeenth century. At
that time both of these terms excluded simple parallel or meridian sailing but modern usage
includes these cases. This is unfortunate. We shall permit rhumb lines to include all possible
directions but we shall restrict the use of loxodrome to azimuths which are neither paral-
lels nor meridians. This is consistent with the definition of the loxodrome in mathematics
as a spherical helix: see Weisstein (2012). The distinction is important for there are two
topologically distinct classes of rhumbs: (a) closed parallels; (b) open lines, loxodromes,
running from pole to pole with meridians as degenerate cases. The importance of rhumb
lines follows from the conformality property: α = β implies that a rhumb line with constant
α is projected to a straight line on the Mercator projection.

http://en.wikipedia.org/wiki/Pedro_Nunes
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Figure 2.14: Rhumb line on the sphere and the Mercator projection

Figure 2.14 shows a loxodrome crossing the equator at 30◦W and maintaining a constant
azimuth of 83◦: it spirals round the sphere covering a finite distance from pole to pole even
though it makes an infinite number of turns about the axis. (These statements are proved
below). On the projection, it is a repeated straight line of infinite total length as |y| → ∞.
The intercepts with the Greenwich meridian are calculated later using Equation 2.43.

Figure 2.15: Infinitesimal elements of a rhumb on the sphere and the projection

Consider the rhumb distance, r12, on the sphere between P(φ1,λ1) and Q(φ2,λ2). If
the rhumb is a parallel the distance is the radius of the parallel circle times the change of
longitude. On a meridian the distance is simply the radius of the sphere times the change of
latitude. For an infinitesimal element of a loxodrome on the sphere, PQ in Figure 2.15a we
have cosα = Rdφ/ds. Since α is a constant this integrates trivially. In summary:

r12 = Rcosφ (λ2−λ1), parallel, (2.37)

r12 = R(φ2−φ1), meridian, (2.38)

r12 = Rsecα (φ2−φ1), loxodrome. (2.39)

Therefore, to calculate the distance along a loxodrome, we need know only the constant
azimuth and the change of latitude. This is an important result. Note (a) the meridian result
can be deduced as the α → 0 limit of the loxodrome result (although the figure is inappro-
priate); (b) the parallel result is not related to the loxodrome result by any limiting process.
The latter is a reflection of the different topological nature of parallels and loxodromes.

The above equations show that the length of a loxodrome is finite. Setting φ1 = −π/2
and φ2 = π/2 in Equation 2.39 we obtain the total length from one pole to another as
πRsecα . This reduces to πR on a meridian.
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Equations of the loxodrome

To find the equation, on the sphere, of the loxodrome which starts at the point (φ1,λ1) at an
azimuth α note that on the projection it is the straight line

y− y1 = (x− x1) cotα . (2.40)

where y1 = Rψ(φ1) and x1 = Rλ1. Using Equations 2.33 and 2.34 gives

ψ(φ) = ψ(φ1)+(λ −λ1)cotα , (2.41)

λ (φ) = λ1 + tanα

[
tanh−1 sinφ − tanh−1 sinφ1

]
, (2.42)

φ(λ ) = sin−1tanh
[
tanh−1 sinφ1 +(λ −λ1)cotα

]
. (2.43)

As an example take λ1 = φ1 = −10◦ and λ = λ2 = φ2 = 40◦. Transforming λ to radian
measure, Equation 2.41 gives

tanα =
π

180
50

[ψ(40)−ψ(−10)]
= 0.929

and therefore α = 42.9◦. Note that this is just the shortest rhumb line through the two
points. If the rhumb makes one complete revolution before getting to the second point, then
replacing ∆λ = 50◦ by ∆λ = 410◦ we find α = 82.5◦ and so on.

Once α has been determined further points on the rhumb are found from Equation 2.43.
For example, for the loxodrome with α = 83◦, φ1 = 0 and λ1 = −30◦ (Figure 2.14), we
calculate the intercepts on the Greenwich meridian (λ = 0, 360, 720, . . .) as

3.7◦, 43.1◦, 67.3◦, 79.4◦, 85.0◦, 87.7◦, 88.9◦, 89.5◦, 89.8◦ . . ..

Equation 2.42 shows that λ becomes infinite at the poles so that the loxodrome must
encircle the pole an infinite number of times as it approaches, even though it is of finite
length. This is a geometrical version of Zeno’s paradox.

Mercator sailing

The above results solve the two basic problem of Mercator sailing, by which we mean
loxodromic sailing; i.e. the trivial cases of sailing along parallels or meridians are excluded
from the discussion. The two problems are

1. Given a starting point P(φ1,λ1) and a destination Q(φ2,λ2) find the azimuth α of the
loxodrome line and the sailing distance, d. (The inverse problem).

2. Given an initial point P(φ1,λ1), a loxodrome of azimuth α and a sailing distance d,
find the destination Q(φ2,λ2). (The direct problem).

We now outline the solution of these problems

http://en.wikipedia.org/wiki/Zeno's paradoxes
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For the inverse problem we are given φ1, λ1, φ2, λ2. First calculate ψ1, ψ2 from 2.33
(or simply use a table of meridian parts as described below): α then follows from 2.41 and
the distance from 2.39 (in nautical miles if the latitudes are given in minutes of arc). On
a chart the angle is measured from the slope of PQ and and the distance, if moderate, can
be approximated without calculation by using dividers to transfer the interval PQ to the
latitude scale on the chart, taking care to place the dividers symmetrically with respect to
the mid-latitude point so that the latitude scale is approximately uniform for that interval.
The latitude difference in minutes gives the distance in nautical miles.

For the direct problem we are given φ1, λ1, r12, α . Equation 2.39 gives δφ ; hence φ2.
Calculate (or use tables for) ψ1, ψ2 and then δλ is found from 2.41; hence λ2. Again,
without calculation, open the dividers to a distance d (given in nautical miles measured as
minutes on the latitude scale and transfer the dividers to the line through P with azimuth α ,
fixing Q; φ2, λ2 can then be read from the chart.

Meridian parts

At the end of the sixteenth century Edward Wright published Certaine Errors in Naviga-
tion (Wright, 1599) in which he criticised the Plane Chart, i.e. the equirectangular chart. He
stressed that over large regions the plane chart was unreliable in respect of both distance and
direction. (See Section 2.3). He advocated the use of Mercator’s chart and constructed his
own version, stressing that he had no assistance in devising his method. He did exploit Mer-
cator’s statement that conformality, not that he used the word, is achieved by compensating
the stretching of parallels to the same width as the equator by an equal amount of stretching
in the meridian direction. He implemented this by dividing the plane chart he divides it into
one minute (of latitude) strips and stretches each by a factor of the secφ evaluated at the
upper edge of the strip; hence giving a slight overestimate. The amount any point moves up
is the sum of the increments of all the strips beneath. His results are summarised in a table
of cumulative secants at intervals of one second of arc and beginning

sec1′ 1.000000042

sec1′+ sec2′ 2.000000211

sec1′+ sec2′+ sec3′ 3.000000592

sec1′+ sec2′+ sec3′+ sec4′ 4.000001269

In the first edition of the book he listed only rounded values at intervals of 10′ but the full
table appears in later editions (Monmonier, 2004, Chapter5). We consider only the first
table. The cumulative secants, multiplied by a factor of 10, later became called meridional
parts and the number of such parts in the interval from zero up to an angle φ is denoted by

MP(φ) = 10
φ

∑
0

secφi at intervals of 1′. (2.44)

N.B. Modern tables and web calculators usually omit this factor of 10.

http://www.csgnetwork.com/marinemeridparts2calc.html
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Some values selected from the published table are shown in the following table: Wright
truncated his calculated values for simplicity of use. He also chose the unit of the meridional
part (MP) to be one tenth of the length of an equatorial minute of longitude. Therefore if
the width of a given chart is W cm. the unit of the meridional part is W/216000 cm. An
extra line has been interpolated in the table at 85◦3′ corresponding to the latitude at which
Wright’s figure in Certaine Errors was truncated at 108000MP so that the aspect ratio (of
the northern hemisphere only) was exactly 2. Note that the first entries, up to 2◦30′, show
the increased spacing was undetectable up to that point in the rounded figures of his table.

Lat. MP Lat. MP Lat. MP

10′ 100 10◦ 6030 70◦ 59667

20′ 200 20◦ 12251 80◦ 83773

30′ 300 30◦ 18884 85◦3′ 108000

· · · · · · 40◦ 26228 89◦ 163176

2◦30′ 1500 50◦ 34746 89◦50′ 226223

2◦40′ 1601 60◦ 45277 90◦ ∞

Table 2.3

Wright asserted that the MP values gave the correct spacing of the Mercator parallels.
This is obvious since his construction is just a numerical integration of secφ replacing Equa-
tion 2.27. Of course the calculus hadn’t been invented in his day and the ‘log-tan’ formula
was derived only one hundred years later, (although Wright’s contemporary and compatriot,
Thomas Harriot, seems to have arrived at the formula by his own original method, Lohne
(1965)). The numerical integration may be written as

ψ(φ) =
∫

φ

0
secφ dφ ≈

φ

∑
0

secφiδφi δφ in radians. (2.45)

An interval of 1′ corresponds to δφ = 0.000291rad = 1/3437.75rad. Therefore

MP(φ) = 10
φ

∑
0

secφi = 34377.5ψ(φ). (2.46)

A table of meridional parts may be used to solve the Mercator sailing problems by calcu-
lation. For example, in the inverse problem the direction of the azimuth may be evaluated
from Equation 2.40:

cotα =
∆y
∆x

=
∆ψ

∆λ
=

3437.75∆ψ

∆λ ′
=

MP(φ2)−MP(φ1)

10(λ ′2−λ ′1)
(2.47)

and the distance (in nautical miles) from Equation 2.39: d = Rsecα ∆φ ′ follows . In the
direct problem ∆φ = (d/R)cosα is known and hence we have φ2. Then λ2 follows from
the last equation.

http://en.wikipedia.org/wiki/Thomas_Harriot
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Wright’s tables of rhumbs

In addition to the table of Meridian parts Wright published tables of rhumb line coordi-
nates, meaning by ‘rhumb’ the seven loxodromes of the first quadrant making angles of
11.25◦, 22.5◦, 33.75◦, 45◦, 56.25◦, 67.50◦, 78.75◦ with the equator at the point of cross-
ing: these angles are the complements of their azimuths. With these values he was able
to plot rhumb lines on globes and also map projections other than mercator. (He mentions
stereographic projections particularly.)

Without loss of generality we assume the rhumbs cross the equator at the zero of longi-
tude. He observes that if we take a step of 1◦ of longitude (600 MP) along the equator the
ordinate of the next point on the first rhumb is 600tan(11.25◦) = 117.8097 MP. Therefore,
since the rhumb is a straight line on the projection, the ordinates of successive points are
simple multiples: 0, 117.81, 235.62, 353.43, · · · . He then used the (full) table of meridian
parts to invert these MP values to give latitudes at steps of one degree of longitude along
the rhumb. Some selected values for the first rhumb are given in the following table:

Long. Lat. Long. Lat. Long. Lat.

0◦ 0◦ 60◦ 11◦′50 360◦ 58◦1′

10◦ 1◦59′ 70◦ 13◦47′ 2×360◦ 80◦36′

20◦ 3◦58′ 80◦ 15◦42′ 3×360◦ 87◦18′

30◦ 5◦57′ 90◦ 17◦37′ 4×360◦ 89◦13′

40◦ 7◦55′ 180◦ 33◦40′ 5×360◦ 89◦46′

50◦ 9◦53′ 270◦ 47◦13′ 6×360◦ 89◦59′

Table 2.4
He gives similar tables for each of the seven rhumbs, all in steps of one degree of

longitude from zero up to a value at which the latitude is equal to 89◦59′. For example the
table for the fourth rhumb terminates at 540◦ and that for the seventh rhumb at 114◦.

2.6 Distances on rhumbs and great circles

The distinction between rhumb distance and great circle distance was clearly understood by
Mercator but he stressed that the rhumb line distance is an acceptable approximation for true
great circle distance for courses of short or moderate distance, particularly at lower latitudes.
(See Mercator, 1569, Legend 12 on the 1569 map.) He even quantifies his statement: ”When
the great circle distances which are to be measured in the vicinity of the equator do not
exceed 20 degrees of a great circle, or 15 degrees near Spain and France, or 8 and even
10 degrees in northern parts it is convenient to use rhumb line distances”. Moreover he
explains how the rhumb distance could be calculated directly from his projection, essentially
by the method we have outlined in Section 2.5, and he would have known how to derive
Equation 2.6 for it is the just the cosine rule of spherical trigonometry: see Appendix D.

http://en.wikipedia.org/wiki/Stereographic_projection
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Figure 2.16: Distances on rhumb lines (solid red) and great circles (dashed blue.)

In Figure 2.16 we illustrate the differences between ruler distances d, rhumb line dis-
tances r (solid red in the figure) and true great circle distances g (dashed blue in the figure).
The great circle distances are always less than or equal to the rhumb line distances.

On the equator

This case is trivial:
d

RF
= g = r. (2.48)

With radius and great circle circumference equal to 6,371km and 40,030km respectively the
60 degree segment shown has length 40030/6 = 6672km. On a map printed with an RF of
1/300M, for which R= 2.12cm and W = 13.34cm, the ruler measurement would be 2.22cm.
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On other parallels

Parallels are rhumb lines but, apart from the equator, they are not great circles. In the
northern (southern) hemisphere the great circle joining two points on a parallel runs north
(south) of the parallel. The rhumb distances are calculated from Equation 2.37 and the great
circle distances are calculated from Equation 2.6, both using the mean radius of 6371km.

d cosφ

RF
= r > g = R

(
cos2

φ cos∆λ + sin2
φ
)
. (2.49)

Figure 2.16 shows two segments of parallels above the equator which have the same ruler
length as that on the equator. There are two segments below the equator which have the
same rhumb lengths as that on the equator.

Note the special case shown at latitude 75◦S. The separation in longitude is 180◦ so the
great circle route is the meridian over the pole: it is considerably shorter even though it
has infinite distance on un-truncated Mercator projection. The length of the great circle is
equal to 40030/12 = 3336km. Note that this distance, and twice its value, appears in several
places in the figure.

On meridians

A meridian on the projection is a great circle but the continuous scale variation means that
ruler distance is not simply related to true distance. If the projection is marked with an
accurate latitude scale, as is usually the case for nautical charts, the meridian distance may
be obtained directly as R∆φ (Equation 2.38). Otherwise it is necessary to measure the ruler
distances of each point from the equator. If these are y1 and y2, with y2 > y1, first find the
latitudes using y = Rgdφ and evaluate R(φ2−φ1):

r = g = Rgd−1
(y2

R

)
−Rgd−1

(y1

R

)
= R tan−1

[
sinh

(y2

R

)]
−R tan−1

[
sinh

(y1

R

)]
. (2.50)

General distances

The figure shows a large triangle joining the cities of New York (40.7◦N, 74.0◦W), Cape
Town (33.0◦S, 18.4◦E) and Lhasa (29.7◦N, 91.1◦E). Once again the ruler distance measure-
ments are not simply related to either rhumb distances or great circle distances which were
calculated from Equations 2.39 and 2.6 respectively. Note the great difference for the two
routes between New York and Lhasa. Where the rhumb joins two points across the equator
it is close to the great circle and the differences are small.

Short distances

Over a small region centred on latitude φ , where the scale factor does not vary too much, the
ruler distance d corresponds to a true distance of (d cosφ)/RF and moreover this is equal
to the rhumb distance, r and the great circle distance, g.
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2.7 The secant normal Mercator projection

Zones of high accuracy in scale

When the Earth is modelled by a sphere reduced by the representative fraction (RF) and then
projected to the plane the scale factor is unity on the equator. Near the equator the Mercator
projection is perfectly suitable for high accuracy conformal mapping. We can make this
statement more quantitative by demanding that the scale variation must remain within (say)
0.1% of the exact scale on the equator. This value is illustrative only.

With this choice, the scale factor varies from 1 on the equator to 1.001, a value which
is attained at latitudes given by k = secφ = 1.001, or φ = ±2.56◦. Therefore the accuracy
of the projection is within 0.1% in a zone of width of 5.12◦, corresponding to a north south
distance of 570km centred on the equator.

It could be argued that that the absolute value of the scale is not relevant—only the
variation of scale over the mapped region is of interest. Consider, for example, a band of
latitudes starting at 10◦N, where k = 1.0154. We find that the scale has increased by 0.1%
to k = 1.0164 when we reach 10.32◦N so that the width of the zone of accuracy starting at
10◦N is only 19′ (or 35km) . Clearly such narrow zones are unsuitable for accurate mapping.

Figure 2.17: The modified normal cylindrical projection

Secant projections

Secant (or ‘modified’) projections provide a means of extending the zone of accuracy of a
map projection. The basic idea is that the scale factor is allowed to be less than 1 and it is
only the modulus of the difference between the scale factor and unity that is confined to a
given range. This is achieved for cylindrical projections by projecting the sphere (according
to a defined mathematical function, not just literally) to a cylinder which cuts the sphere in
two parallels at±φ1. Hence the terminology ‘secant’ meaning cutting. The parallels at±φ1
are called the standard parallels of the secant projection.

Clearly the points on the parallel at φ1 lie on both the sphere and on the cylinder and
therefore the scale factor at that latitude must be k = 1 and the width of the projection
must be 2π cosφ1. Parallels on the projection between latitudes±φ1 must be contracted and
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outside that interval they must be stretched. In general the scale factor on a parallel is

k(φ) =
projected length

true length
=

2π cosφ1

2π cosφ
= cosφ1 secφ . (2.51)

The usual parallel scale factor on the normal cylindrical, secφ , follows from Equation 2.19
using x = Rλ . To obtain the modified scale factor we must augment the x-transformation
equation by a factor k0 equal to cosφ1. To preserve conformality we must also multiply the
y-transformation equation by the same factor (so that the ratio of δx/δy in Equation 2.16 is
unchanged). The equations of the secant equatorial Mercator projection are therefore:

x = k0Rλ , y = k0R ln
[

tan
(

φ

2
+

π

4

)]
, k0 = cosφ1, k(φ) = k0 secφ . (2.52)

If, as before, we allow a 0.1% variation in the scale factor we have k(0) = k0 = 0.999
on the equator and therefore φ1 = 2.56◦. The scale factor will then be equal to its maximum
permitted value at a latitude φ2 such that 1.001 = 0.999cosφ2: this gives φ2 = 3.62◦ and the
width of the zone of high accuracy is now 7.24 degrees corresponding to 805km. This is to
be compared with the previous zone width of 570km. The secant projection has achieved a
50% greater zone at the same accuracy.

If we take φ1 =±40◦ then the scale at the equator is k = 0.76 and the latitudes at which
k = 1.24 are ±52◦. Between these latitudes the projection is accurate to within 24%.

For the highly accurate large scale maps (of narrow zones) of the value of k0 is taken as
0.9996. (Web links: UTM, OSGB ). See also UTM (1989) and OSGB (1999).

Other secant projections

All cylindrical projections have a secant form. There are two standard parallels at ±φ1 on
which parallel scale is unity and the x-transformation equation is as above for Mercator with
k0 = cosφ1. The y-transformation equation depends on the projection.

For the secant equirectangular projection the equations are

x = k0 Rλ , y = Rφ , k(φ) = k0 secφ , h = 1. (2.53)

The very earliest (Greek) example of this projection used a value of k0 = 0.81 correspond-
ing to the latitude of Rhodes at φ1 = 36◦N. For this value the spacing of the meridians
is about 4/5 that of the parallels so that the graticule takes on a rectangular appearance
(Snyder, 1993).

For the secant equal area projection the equations are

x = k0 Rλ , y = k−1
0 R sinφ , k(φ) = k0 secφ , h = k−1

0 cosφ . (2.54)

The product fo the scale factors remains unchanged at unity. With standard parallels at
φ1 = ±45◦ the value of k0 is /

√
2 = 0.707 so that the equator is contracted by 30%. This

form of the equal area projection was presented by Gall in 1855 and later republished by
Peters in 1973. The distortion of shape in the Gall-Peters projection is well known: central
Africa becomes much too narrow compared with its Mediterranean coastline.

http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
http://en.wikipedia.org/wiki/Ordnance_Survey_National_Grid
http://en.wikipedia.org/wiki/Gall-Peters_projection
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2.8 Summary of NMS

Mercator parameter ψ(φ) = ln
[

tan
(

φ

2
+

π

4

)]
=

1
2

ln
[

1+sinφ

1− sinφ

]
,

= ln(secφ + tanφ) = sinh−1 tanφ ,

= sech−1 cosφ = cosh−1 secφ ,

= tanh−1 sinφ = gd−1(φ) . (2.55)

Inverse parameter φ(ψ) = 2tan−1 expψ− π

2
= sin−1 tanhψ,

= tan−1 sinhψ = cos−1 sechψ ,

= sec−1 coshψ = gdψ . (2.56)

Direct projection x(λ ,φ) = k0R(λ −λ0), (2.57)

y(λ ,φ) = k0Rψ(φ), (2.58)

Inverse projection λ (x,y) = λ0 +
x

k0R
, (2.59)

φ(x,y) = gdψ(y), ψ(y) =
y

k0R
(2.60)

Scale factors k(λ ,φ) = k0 secφ (2.61)

k(x,y) = k0 coshψ(y), ψ(y) =
y

k0R
(2.62)

Notes

[1] The angle 2ε ≈ sinφ δλ in Figure 2.3 may be taken as a measure of the spherical
convergence of the meridians on the sphere; it must not be confused with the projection
(grid) convergence defined in Section 3.6. There is no accepted definition of spherical
convergence (Lee, 1946b). That it is a suitable measure of meridian convergence on
the sphere may be seen from the fact that it sensibly interpolates between zero on the
equator, where meridians are parallel, and the value δλ at the pole, the angle at which
the meridians PK and MQ intersect there.

[2] In referring to geographic positions it is conventional to use latitude–longitude ordering
as in P(φ ,λ ) but for mathematical functions of these coordinates it is more natural to
use the reverse order as in x(λ ,φ).

[3] Note that there is no need for modulus signs inside the logarithm. For−π/2≤ φ ≤ π/2
the argument of the tangent is in the interval [0,π/2], therefore the argument of the
logarithm is in the range [0,∞) and the logarithm itself varies from −∞ to ∞.
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Chapter3
Transverse Mercator on the sphere: TMS

Abstract

TMS transformations from NMS by rotation of the graticule. Four global TMS
projections. Meridian distance, footpoint and footpoint latitude. Scale factors.
Relation between azimuth and grid bearing. Grid convergence. Conformality,
the Cauchy–Riemann conditions and isotropy of scale. Series expansions for
the TMS transformation formulae. Secant TMS.

3.1 The derivation of the TMS formulae

In Chapter 2 we constructed the normal Mercator projection (NMS). The strength of NMS
is its conformality, preserving local angles exactly and preserving shapes in “small” regions
(orthomorphism). Furthermore, meridians project to grid lines and conformality implies
that rhumb lines project to constant grid bearings, thereby guaranteeing the continuing use-
fulness of NMS as an aid to navigation.

As a topographic map of the globe NMS has shortcomings in that the projection greatly
distorts shapes as one approaches the poles—because of the rapid change of scale with
latitude. However, the (unmodified) NMS is exactly to scale on the equator and is very
accurate within a narrow strip of about three degrees centred on the equator (extending to
five degrees for the secant NMS). It is this accuracy near the equator that we wish to exploit
by constructing a projection which takes a complete meridian great circle as a ‘kind of
equator’ and uses ‘NMS on its side’ to achieve a conformal and accurate projection within
a narrow band adjoining the chosen meridian. This is the transverse Mercator projection
(TMS) first demonstrated by Lambert (1772).

The crucial point is that if we have a projection which is very accurate close to one
meridian then a set of such projections will provide accurate coverage of the whole sphere.

The secant versions of the transverse Mercator projection on the ellipsoid (TME), are of
great importance. One such projection may be used for map projections of countries which
have a predominantly north-south orientation, for example the Ordnance Survey of Great
Britain; see also OSGB (1999). The Universal Transverse Mercator set of projections cover
the entire sphere (between the latitudes of 84◦N and 80◦S) using 60 zones of width 6◦ in
longitude centred on meridians at 3◦, 9◦, 15◦, . . . (UTM, 1989).

http://en.wikipedia.org/wiki/Ordnance_Survey_National_Grid
http://en.wikipedia.org/wiki/Ordnance_Survey_National_Grid
http://en.wikipedia.org/wiki/UTM_coordinate_system
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In unmodified NMS the equator has unit scale because we project onto a cylinder tan-
gential to the sphere at the equator, (Figure 2.3) Therefore, for TMS we seek a projection
onto a cylinder which is tangential to the sphere on some chosen meridian or strictly, a pair
of meridians such as the great circle formed by meridians at Greenwich and 180◦E: the ge-
ometry is shown in Figure 3.1a. This will guarantee that the scale is unity on the meridian:
the problem is to construct the functions x(λ ,φ) and y(λ ,φ) such that the projection is also
conformal.
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Figure 3.1

The solution is remarkably simple. We first introduce a new graticule which is simply
the normal graticule of Figure 3.1a rotated so that its “equator” coincides with the chosen
meridian great circle as in Figure 3.1b. Let φ ′ and λ ′ be the coordinates of P with respect
to the new graticule: they are the angles PCM′ and OCM′ on the figure. Note that λ ′ is
measured positive from the origin O towards M′: this is opposite to the sense of λ in the
standard graticule of Figure 3.1a. In Figure 3.1b we have also shown x′ and y′ axes which
are related to the rotated graticule in the same way that the axes were assigned for the
normal NMS projection in Figure 3.1a. Therefore, bearing in mind the sense of λ ′, the
equations (2.28) for NMS with respect to the rotated graticule are

x′ =−Rλ
′, y′ = Rψ(φ ′) = R ln

[
tan
(

φ ′

2
+

π

4

)]
. (3.1)

Now the relation between the actual TMS axes and the primed axes is simply x = y′ and
y = −x′, so that we immediately have the projection formulae with respect to the angles
(φ ′,λ ′,) of the rotated graticule:

x = Rψ(φ ′) = a ln
[
tan
(
φ
′/2+π/4

)]
, y = Rλ

′. (3.2)

It is more useful to adopt one of the alternative forms of the Mercator parameter given in
Equation (2.55). (Each would give a different expression for our final result.) We choose

x = R tanh−1 sinφ
′, y = Rλ

′. (3.3)

All that remains is to derive the relation between (φ ′,λ ′) and (λ ,φ) by applying spherical
trigonometry to the triangle NM′P defined by the (true) meridians through the origin and
an arbitrary point P and by the great circle WM′PE (Figure 3.2a) which is a “meridian” of
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the rotated graticule. The right-hand figure shows a similar spherical triangle in standard
notation for which the sine and cosine rules (Appendix D) are (for a unit sphere)

sinA
sina

=
sinB
sinb

=
sinC
sinc

, (3.4)

cosa = cosbcosc+ sinbsinccosA, (3.5)

cosb = cosccosa+ sincsinacosB, (3.6)

cosc = cosacosb+ sinasinbcosC. (3.7)
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λ
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Figure 3.2

With the identifications

A→ λ , B→ π

2
, C→ β ,

a→ φ
′, b→ π

2
−φ , c→ π

2
−λ

′, (3.8)

the first two terms of the sine rule and the first two cosine rules give

sinφ
′ = sinλ cosφ , (3.9)

cosφ
′ = sinφ sinλ

′+ cosφ cosλ
′ cosλ , (3.10)

sinφ = sinλ
′ cosφ

′+0. (3.11)

Note the simple expression for sinφ ′ in terms of λ and φ ; this explains why we chose the
alternative form of the NMS transformations in equation (3.3). To obtain the expression for
λ ′ we eliminate cosφ ′ from the last two of these equations. On simplification we find

tanλ
′ = secλ tanφ . (3.12)

Our choice (3.3) gives the equations for TMS centred on the Greenwich meridian as

x(λ ,φ) = R tanh−1 [sinλ cosφ ]

y(λ ,φ) = R tan−1 [secλ tanφ ]
(3.13)

For a different central meridian we simply replace λ by λ −λ0.
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Alternative notation

Using Equation 2.31 instead of Equation 2.33 we can replace Equation 3.3 by

x =
R
2

ln
[

1+ sinφ ′

1− sinφ ′

]
, y = Rλ

′. (3.14)

The corresponding equations are:

x(λ ,φ) =
R
2

ln
[

1+ sinλ cosφ

1− sinλ cosφ

]
y(λ ,φ) = R tan−1 [secλ tanφ ]

(3.15)

Central meridian

On the central meridian, where λ=0, the TMS equations become x=0 and y=Rφ so the
scale on the central meridian is constant and the range of y is [−πR/2, πR/2].

Equator

On the equator, where φ=0, we have y=0 but the equation for x diverges to infinity as
λ →±π/2. Thus it would appear that only the front hemisphere, between longitudes−π/2
and π/2 ( or −90◦ to 90◦), can be mapped by the projection.

Extended transformation

The rear hemisphere, remote from the central meridian, can be mapped in the same projec-
tion by modifying the equation for y noting that the inverse tangent is arbitrary to within an
additive factor of Nπ (integer N). If we restrict the value of tan−1 [secλ tanφ ] to the interval
[−π/2,π/2] then we can set

y =

 πR
0
−πR

+R tan−1 [secλ tanφ ] for

 |λ |> π/2, 0≤ φ ≤ π/2
|λ | ≤ π/2, |φ | ≤ π/2
|λ |> π/2, 0≥ φ ≥−π/2

. (3.16)

For example, where |λ |>π/2 and φ>0 we have secλ tanφ < 0 and as φ increases from 0 to
π/2 the value of y decreases from πR to πR/2. Therefore the rear northern hemisphere ap-
pears inverted above the north pole. Similarly the rear southern hemisphere appears inverted
below the south pole. This is how Figures 3.3–3.6, were constructed. Note that the equator
now includes the top and bottom edges of the projection (y=±πR); latitude increases from
these lines towards the poles. Note that above and below the poles longitudes increase from
right to left. The meridians at±π/2 (±90◦) from the central meridian project to lines πR/2.
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The inverse transformations

Invert Equations 3.13:

sinλ cosφ = tanh(x/R), (3.17)

secλ tanφ = tan(y/R). (3.18)

Eliminating φ gives

sec2
φ = sin2

λ coth2(x/R) = 1+ cos2
λ tan2(y/R),

tan2
λ
(
coth2(x/R)−1

)
= sec2(y/R),

tanλ = sinh(x/R)sec(y/R), (3.19)

thus determining λ as a function of x and y. To find φ as a function of x and y first multiply
equations (3.17) and (3.18) to give

tanλ sinφ = tanh(x/R) tan(y/R). (3.20)

Eliminating tanλ from the last two equations gives

sinφ = sech(x/R)sin(y/R). (3.21)

Thus the the inverse transformations are

λ (x,y) = tan−1 [sinh(x/R)sec(y/R)] , (3.22)

φ(x,y) = sin−1 [sech(x/R)sin(y/R)] . (3.23)

If |y|≤π/2 the inverse sine and tangent are restricted to the interval [−π/2,π/2] thus giving
points on the front of the sphere. If |y| ≥ π/2 the inverse tangent must be taken outwith the
interval [−π/2,π/2] to give points on the rear of the sphere.

3.2 Features of the TMS projection

Figures 3.3–3.6, show the TMS projections centred on (a) Greenwich (λ0=0), (b) Africa
(λ0=21◦), (c) the Americas (λ0=−87◦); (c) Australasia and Japan (λ0=135◦). The axes of
these projections are labelled in units of Earth radius, equivalent to setting R=1. They have
been truncated at x =±π to give a unit aspect ratio. The figures are overlain by a 15◦ gratic-
ule (relative to the equator and central meridian) and annotated with (latitude,longitude) co-
ordinates of selected interior intersections and boundary points. The Greenwich meridian
and its great circle continuation is shown in green (Figures 3.4–3.6 only).

These slightly bizarre (x-truncated) TMS projections covering most the Earth are not
of practical use. On the other hand, when these projections are generalised to the ellipsoid
(TME), the small regions within the narrow (red) rectangles on the central meridian (Fig-
ures 3.4–3.6 only) are the areas covered by the highly accurate large scale projections for
UTM zones 34, 16 and 53. In general the central part of the projection is suitable for large
scale maps of predominantly north-south land masses, such as Great Britain.

The following table compares and contrasts the features of NMS and TMS.
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−3 −2 −1 x=0 1 2 3π−π
−3

−2

−π/2

−1

y=0

1

π/2

2

3

−π

π
(0,-105) (0,-120) (0,±180) (0,130.4) (0,105.4) (0,95.7)

(0.7,94.5)

(4.5,92.1)

(4.9,90)

(4.2,87.3)

(0,85.1)
(0,-60) (0,0) (0,30) (0,60) (0,75)

(-30,75)

(-15,75)

(-15,60)

(-15,-105)

(-15,-90) (-15,90)

Figure 3.3 : Transverse Mercator centred on Greenwich

NMS TMS
•Meridians project to lines of constant x.

Central meridian is x=0.
•Central meridian is x=0. Meridians at ±90◦

are lines of constant y through poles. Other
meridians project to complicated curves.

•The equator projects to the straight line y=0. •The equator projects to three straight lines:
y=0 and the top and bottom edges. At top
and bottom longitude increases to the left.

•Parallel circles project to straight lines of
constant y.

•Parallel circles project to closed curves
around poles.

•The poles project to lines, y =±π for R=1. •The poles project to points.

•Meridians and parallels intersect at right
angles.

•Meridians and parallels intersect at right
angles.

(continued)
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−3 −2 −1 x=0 1 2 3π−π
−3

−2

−π/2

−1

y=0

1

π/2

2

3

−π

π
(0,-84) (0,-99) (0,-159) (0,151.4) (0,126.4) (0,116.7)

(0.7,155.5)

(4.5,113.1)

(4.9,111)

(4.2,108.3)

(0,106.1)
(0,0)(0,-39) (0,21)(0,51) (0,81) (0,96)

(-30,96)

(-15,96)

(-15,81)

(-15,-84)

(-15,-69) (-15,111)

Figure 3.4 : Transverse Mercator centred on 21E

NMS TMS
•The projection is unbounded in y. The poles

lie at infinity. Figure 2.8 is truncated at
latitude ±85◦ to give unit aspect ratio.

•The projection is unbounded in x. The
points on the equator at λ0±90◦ are
projected to infinity. The TMS projections
are truncated at the x-value corresponding to
longitudes λ0±85◦ on the equator.

•The projection is conformal. The shapes of
small elements are well preserved.

•The projection is conformal. The shapes of
small elements are well preserved.

•Distortion increases with y. The projection
is not suited for world maps.

•Distortion increases with x. The projection
is not suited for world maps.

•Distortion is small near the equator: the
projection is suitable for accurate mapping
of equatorial regions

•Distortion is small near the central meridian:
the projection is suitable for accurate
mapping near the central meridian.

(continued)
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−3 −2 −1 x=0 1 2 3π−π
−3

−2

−π/2

−1

y=0

1

π/2

2

3

−π

π
(0,168) (0,153) (0,93) (0,43.4) (0,18.4) (0,8.7)

(0.7,7.5)

(4.5,5.1)

(4.9,3)

(4.2,0.3)

(0,-1.9)

(3.9,0)

(-3.9,0)

(0,-147) (0,-87)(0,-57) (0,-27) (0,-12)

(-30,-12)

(-15,-12)

(-15,-27)

(-15,168)

(-15,-177) (-15,3)

(15,180)

(-15,180)

(-15,0)

(15,0)

Figure 3.5 : Transverse Mercator centred on 87W

NMS TMS
•The point scale factor is independent of

direction (isotropic). It is a function of y on
the projection so that it depends on latitude
only. The scale is true on the equator.

•The point scale factor is independent of
direction (isotropic). It is a function of x on
the projection but depends on both latitude
and longitude. The scale is true on the
central meridian.

•The projection is reasonably accurate near
the equator. The scale factorincreses by 1%
(10%) at latitudes of 8◦ (25◦).

•The projection is reasonably accurate near
the central meridian. The scale factor
increases by 1% (10%) at when x=0.14R,
(0.44R). A strip x<const. is not readily
related to regions defined in terms of
geographical coordinates.

• In the secant version the scale is reduced on
the equator and it is true on two ‘standard’
parallels.

• In the secant version the scale is reduced on
the central meridian: it is true on two lines
parallel to the central meridian on the
projection.

(continued)
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−3 −2 −1 x=0 1 2 3π−π
−3

−2

−π/2

−1

y=0

1

π/2

2

3

−π

π
(0,30) (0,15)(0,0) (0,-45) (0,-94.6) (0,-119.6) (0,-129.3)

(0.7,-130.5)

(4.5,-132.9)

(4.9,-135)

(4.2,-137.7)

(0,-139.9)
(0,60) (0,75) (0,105)(0,135) (0,-150)

(-30,-150)

(-15,-150)

(-15,-165)

(-15,30)

(-15,45) (-15,-135)

(0,180)

Figure 3.6 : Transverse Mercator centred on 135E

NMS TMS
•Convergence (the angle between projected

meridians and grid lines) is identically zero.
Grid north and true north coincide.

•Convergence is zero on the equator and
increases towards the poles. Grid north and
true north do not coincide.

•Loxodromes running from pole to pole on
the sphere project to straight lines.

•Loxodromes running from pole to pole on
the sphere cannot project to straight lines.

•Area is not conserved but is approximately
so near the equator. Greenland is much
larger than Australia: it should be about one
third of the size.

•Area is not conserved but is approximately
so near the central meridian. For λ=135◦E
the shapes and relative sizes of Greenland
and Australia are both good. Areas far from
the central meridian are enlarged, e.g.
Ethiopia.

Comment The following pages contain versions of Figures 3.3–3.6 which are suitable for
printing.
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−3 −2 −1 x=0 1 2 3π−π

−3

−2

−π/2

−1

y=0

1
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(0.7,94.5)

(4.5,92.1)

(4.9,90)

(4.2,87.3)
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(0,-60) (0,0) (0,30) (0,60) (0,75)

(-30,75)
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(-15,60)
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−3 −2 −1 x=0 1 2 3π−π
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−π/2

−1

y=0

1

π/2

2

3

−π

π
(0,-84) (0,-99) (0,-159) (0,151.4) (0,126.4) (0,116.7)

(0.7,155.5)

(4.5,113.1)

(4.9,111)

(4.2,108.3)

(0,106.1)
(0,0)(0,-39) (0,21)(0,51) (0,81) (0,96)

(-30,96)

(-15,96)

(-15,81)

(-15,-84)

(-15,-69) (-15,111)

Figure 3.7 : Transverse Mercator centred on Greenwich (top) and 21E (bottom)
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−3

−2

−π/2

−1

y=0
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π/2
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−π

π
(0,168)(0,153) (0,93) (0,43.4) (0,18.4) (0,8.7)

(0.7,7.5)

(4.5,5.1)

(4.9,3)

(4.2,0.3)

(0,-1.9)

(3.9,0)

(-3.9,0)

(0,-147) (0,-87)(0,-57) (0,-27) (0,-12)

(-30,-12)

(-15,-12)

(-15,-27)

(-15,168)
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(-15,180)

(-15,0)
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y=0

1
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(0,30) (0,15)(0,0) (0,-45) (0,-94.6) (0,-119.6) (0,-129.3)

(0.7,-130.5)

(4.5,-132.9)

(4.9,-135)

(4.2,-137.7)

(0,-139.9)
(0,60) (0,75) (0,105)(0,135) (0,-150)

(-30,-150)

(-15,-150)

(-15,-165)

(-15,30)

(-15,45) (-15,-135)

(0,180)

Figure 3.8 : Transverse Mercator centred on 87W (top) and 135E (bottom)
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3.3 Meridian distance, footpoint and footpoint latitude

We introduce three definitions which, whilst both trivial and superfluous for the sphere,
become very important when we study the transformations on the ellipsoid (TME). Let
P(λ ,φ) be a general point on the sphere which projects to P′(x,y).

• The meridian distance, m(φ), is the distance measured along a meridian from the
equator to a point at latitude φ :

m(φ) = Rφ . (3.24)

On the central meridian of TMS we have y(0,φ) = m(φ).

• The footpoint associated with any point P′(x,y) on the projection is that point P′1
on the central meridian of the projection which has the same ordinate as P′. The
coordinates of the footpoint are P′1(0,y).

• The footpoint latitude, φ1, is the latitude of the point P1 on the central meridian of
the sphere which projects into the footpoint P′1(0,y). In general this latitude is not
equal to that at the point P(λ ,φ) which is the inverse of P′(x,y).
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Figure 3.9
From these definitions and equation (3.23) we have

φ1 = φ(0,y) = sin−1 [sin(y/R)] = y/R. (3.25)

This is obvious because, by construction, the scale of the projection is true on the central
meridian so that y = Rφ1 and hence φ1 = y/R. Equation (3.24) implies

m(φ1) = y. (3.26)

We now take this equation as a definition of the footpoint latitude which will continue to
hold on the ellipsoid where m(φ) is a non-trivial function. For future reference we write
equations (3.22) and (3.23) in terms of the footpoint latitude as

λ (x,y) = tan−1 [sinh(x/R)secφ1] , (3.27)

φ(x,y) = sin−1 [sech(x/R)sinφ1] m(φ1) = y. (3.28)

The reason for stressing the role of the footpoint is that the series solutions for the inverse
transformation of TME must be expressed as Taylor series about the footpoint latitude where
m(φ) is a non-trivial relation, unlike the simple m(φ)=Rφ in the present case.
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3.4 The scale factor for the TMS projection

Because of the way in which the TMS was constructed, by applying NMS to a rotated
graticule, we know that the scale factor for TMS is isotropic and, in terms of the rotated
latitude φ ′, its value is k = secφ ′. Using (3.9) and (3.17) we find the scale factor in terms of
either geographical or projection coordinates:

k(λ ,φ) =
1

(1− sin2
λ cos2 φ)1/2

(3.29)

k(x,y) = cosh(x/R). (3.30)

Scale variation is complicated in terms of geographical coordinates but is very simple in
terms of projection coordinates. For example cosh0.14 = 1.01 so that within the strip x <
0.14R (x< 0.44R) the scale variation is less than 1% (10%).

3.5 Azimuths and grid bearings in TMS

To investigate the relation between azimuths on the sphere and grid bearings on the projec-
tion we consider the infinitesimal elements shown in Figure 3.10. Now strictly, an infinites-
imal element on the projection would be a quadrilateral but we have drawn it as curvilinear
quadrilateral to emphasize the fact that the meridian MP, the parallel PN and the displace-
ment PQ will in general project to curved lines on the projection. The relevant angles must
be defined with respect to the tangents of these lines at P′. The angles of interest are

Figure 3.10

• α , the azimuth at P between the meridian PM and a displacement PQ on the sphere.

• α ′, the angle at P′ between the projected meridian P′M′ and the displacement P′Q′.

• β , the grid bearing at P′ between the projected displacement P′Q′ and the y-axis.

• γ , the (grid) convergence between the projected meridian and the y-axis.

• Clearly α ′ = β + γ .
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The construction of TMS guarantees conformality so the corresponding angles α and α ′

must be equal. Therefore
α = β + γ (3.31)

or, in words:
AZIMUTH = GRID BEARING +CONVERGENCE

This equation is to be used in both directions. If we are given an azimuth α at P(λ ,φ)
on the sphere then the corresponding bearing at P′ on the map projection can be calculated
from β = α − γ(λ ,φ). Likewise, given a bearing at a point P′(x,y) on the projection we
find the azimuth at the corresponding point at P on the sphere from α = β +γ(x,y). Clearly
we need to find expressions for the convergence in terms of both geographic and projection
coordinates.

Although the convergence can take a wide range of values on small scale TMS projec-
tions (such as Figure 3.3), remember that the projection (generalised to the ellipsoid) will
be applied only in the region very close to the central meridian where the the non-central
meridian lines make very small angles with the y-axis. For example, over Great Britain
the convergence of the OSGB maps is never greater than 5◦ and in a UTM zone it is never
greater than 3%.

3.6 The grid convergence of the TMS projection

The figure shows a section of the 45◦E meridian between
the equator and the north pole of the TMS projection of
Figure 3.3. Since TMS is conformal the angle between
this projected meridian and the y-axis must be 45◦ at the
pole. The figure also shows some grid lines and the (y in-
creasing) direction of these lines is defined as grid north
even though these lines, the y-axis excepted, do not pass
through the north pole on the projection. We also define
the tangent of the meridian at P′ to be the direction of true
north at that point even though the tangent does not point
directly to the pole at N.
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Figure 3.11

We can therefore recast the definition of convergence given in the last section. It is
the angle between grid north and true north at a point P′ on the projection and it is usually
specified as so many degrees west or east of grid north. For more general mathematical
work we use a signed convergence defined by

tanγ =− dx
dy

∣∣∣∣
P′

(3.32)

so that in the quadrant shown in the figure, where δx < 0 when δy > 0, the convergence γ

is positive. (Thus a positive convergence is to the west of grid north).
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The increments in x(λ ,φ) and y(λ ,φ) for arbitrary changes in φ and λ are

δx =
(

∂x
∂λ

)
δλ +

(
∂x
∂φ

)
δφ = xλ δλ + xφ δφ , (3.33)

δy =
(

∂y
∂λ

)
δλ +

(
∂y
∂φ

)
δφ = yλ δλ + yφ δφ , (3.34)

but the tangent at P′ is along the projection of a meridian on which δλ = 0. Therefore

tanγ =− lim
δx
δy

∣∣∣∣
δλ=0

=−xφ

yφ

, (3.35)

γ =− tan−1
(xφ

yφ

)
. (3.36)

The partial derivatives are evaluated from equations (3.13); to put them in simpler forms we
use equation (3.9) and some equivalent forms

sinφ
′ = sinλ cosφ , (3.37)

cos2
φ
′ = 1− sin2

λ cos2
φ = sin2

φ + cos2
λ cos2

φ

= cos2
λ + sin2

φ sin2
λ = cos2

λ cos2
φ (1+ sec2

λ tan2
φ). (3.38)

Therefore

x =
R
2

tanh−1 [sinλ cosφ ] y = R tan−1 [secλ tanφ ] , (3.39)

xλ = Rsec2
φ
′ cosλ cosφ , yλ = Rsec2

φ
′ sinλ sinφ cosφ , (3.40)

xφ =−Rsec2
φ
′ sinλ sinφ , yφ = Rsec2

φ
′ cosλ . (3.41)

The convergence as a function of geographic coordinates follows from equation (3.36):

γ(λ ,φ) = tan−1 (tanλ sinφ) . (3.42)

This result can be written in terms of x and y by using equation (3.20) giving

γ(x,y) = tan−1 [tanh(x/R) tan(y/R)] (3.43)

It will prove useful to write this result in terms of x and the footpoint latitude as

γ(x,y) = tan−1 [ tanh(x/R) tanφ1
]
, m(φ1) = y. (3.44)
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3.7 Conformality of general projections

So far we have claimed, fairly, that TMS is conformal with an isotropic scale factor by
virtue of the method we used to derive the projection, viz NMS ‘on its side’. It is instructive
to ask how we may decide that an arbitrary projection from the sphere is conformal. To this
end consider Figure 3.10 where the azimuth angle of the displacement PQ on the sphere is
given by

tanα = lim
Q→P

cosφ δλ

δφ
. (3.45)

Consider the grid bearing of the corresponding displacement P′Q′ for an arbitrary projec-
tion. Using equations (3.33, 3.34), with the constraint implied by the above equation, we
have

tanβ = lim
δx
δy

= lim
xλ δλ + xφ δφ

yλ δλ + yφ δφ

∣∣∣∣
δφ=

cosφ δλ

tanα

=
xλ tanα + xφ cosφ

yλ tanα + yφ cosφ
. (3.46)

We already know tanγ from equation (3.35), therefore we can calculate α ′, the angle be-
tween the projected meridian and parallel, as

tanα
′ = tan(β + γ) =

tanβ + tanγ

1− tanβ tanγ
(3.47)

=
yφ (xλ tanα + xφ cosφ )− xφ (yλ tanα + yφ cosφ )

yφ (yλ tanα + yφ cosφ )+ xφ (xλ tanα + xφ cosφ )

=
(xλ yφ − xφ yλ ) tanα

cosφ (x2
φ
+ y2

φ
)+(xλ xφ + yλ yφ ) tanα

. (3.48)

The projection will be conformal if tanα ′ = tanα so that

(xλ xφ + yλ yφ ) tanα +
[
cosφ (x2

φ + y2
φ )− (xλ yφ − xφ yλ )

]
≡ 0. (3.49)

This is an identity which must hold for all values of α , therefore the coefficient of tanα and
the constant term must both vanish. This gives two conditions:

xλ xφ + yλ yφ = 0 (3.50)

cosφ (x2
φ + y2

φ ) = (xλ yφ − xφ yλ ). (3.51)

Using (3.50), the second of these equations can be written as

cosφ y2
φ

(
1+ x2

φ/y2
φ

)
= xλ yφ

(
1+ x2

φ/y2
φ

)
, (3.52)

so that we must have xλ = cosφ yφ . If we then substitute this back into (3.50) we obtain
yλ =−cosφ xφ . Thus the following conditions are necessary (and trivially sufficient) for a
conformal transformation from the sphere to the plane.

CAUCHY–RIEMANN xλ = cosφ yφ , yλ =−cosφ xφ (3.53)

It is trivial to check that these Cauchy–Riemann conditions are satisfied for both NMS and
TMS: in the first case have (from 2.28) xλ=a, yφ=asecφ and xφ=yλ=0; TMS follows
immediately from equations (3.40, 3.41).
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Conformality implies scale isotropy

Consider now the scale factor for an arbitrary transformation. Substituting δx and δy from
equations (3.33 , 3.34) into the definition of the scale factor (equation 2.18) we have

µ
2 = lim

Q→P

δ s′2

δ s2 = lim
Q→P

δx2 +δy2

R2δφ 2 +R2 cos2φ δλ 2

= lim
Q→P

Eδφ 2 +2Fδφ δλ +Gδλ
2

R2δφ 2 +R2 cos2φ δλ 2 . (3.54)

where
E(λ ,φ) = x2

φ + y2
φ , F(λ ,φ) = xλ xφ + yλ yφ , G(λ ,φ) = x2

λ
+ y2

λ
. (3.55)

The Cauchy–Riemann equations (3.53) imply that F = 0 and G = cos2φ E so the above
limit reduces to E/R2 independent of α . Therefore the scale factor is isotropic with a value
given by

ISOTROPIC SCALE k(λ ,φ) = 1
R

√
x2

φ
+ y2

φ
= 1

Rcosφ

√
x2

λ
+ y2

λ
.

(3.56)
Therefore ALL conformal transformations have isotropic scale factors. It is a simple exercise
to show that the above equation reduces to secφ for NMS and to secφ ′ for TMS; for the
latter use equations (3.37–3.41) to confirm the results of Section 3.4.

3.8 Series expansions for the unmodified TMS

The transverse Mercator on the ellipsoid (TME) will be determined as power series. Here
we derive the corresponding series for TMS; thy will provide a check for the TME series in
the limit of the eccentricity of the ellipsoid tending to zero. For the direct transformations
we hold φ constant and expand in terms of λ and for the inverse transformations we hold y
constant and expand in terms of x/a. Typically the half-width (at the equator) of a transverse
projection is about 3◦ on the sphere and about 330km on the projection so that λ < .05
(radians) and x/a < 0.05. In this section we shall drop terms involving fifth or higher
powers of these small parameters but when we construct the series for TME we will retain
higher orders

The coefficients of the direct series involve trigonometric functions of φ which not not
necessarily small: for example tanφ is about 1.7 at 60◦N. Likewise, the coefficients of the
inverse series will be functions of the footpoint latitude φ1 which again is not generally
small. It is convenient to introduce the following compact notation for the trigonometric
functions of φ and φ1:

s = sinφ c = cosφ t = tanφ (3.57)

s1 = sinφ1 c1 = cosφ1 t1 = tanφ1 m(φ1) = y, (3.58)

where m(φ) = aφ is the meridian distance and φ1 is the footpoint latitude.

All of the Taylor series that we need for the expansions are collected in Appendix E.
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Direct transformation for x

Equation (3.13a) is x =
R
2

ln
[

1+ sinλ cosφ

1− sinλ cosφ

]
=

R
2

ln
[

1+ csinλ

1− csinλ

]
.

Since sinλ � 1 we first expand the logarithm with (E.12) and then substitute for sinλ

with (E.13) to obtain

x(λ ,φ) = Rc(λ − 1
6

λ
3 + · · ·)+ 1

3
Rc3(λ −·· ·)3 + · · ·

= Rcλ +
1
6

Rc3(1− t2)λ 3 + · · · . (3.59)

Direct transformation for y

Equation (3.13b) is y(λ ,φ) = R tan−1 [secλ tanφ ] = R tan−1 [t secλ ] .

The argument of the arctan is not small but, using (E.16), we have

t secλ = t
(

1+
1
2

λ
2 +

5
24

λ
4 + · · ·

)
= t + z, with z = t

(
1
2

λ
2 +

5
24

λ
4 + · · ·

)
� 1.

Using (E.9) with b = t we have

y(λ ,φ) = R tan−1(t + z)

= R tan−1(t)+Rt
(

1
2

λ
2 +

5
24

λ
4
)

1
1+ t2 +Rt2

(
1
2

λ
2 + · · ·

)2 (−t)
(1+ t2)2 .

Now R tan−1(t) = R tan−1(tanφ) = Rφ = m(φ) so we can write

y(λ ,φ) = m(φ)+
Rsc
2

λ
2 +

Rsc3λ 4

24
(
5− t2)+ · · · . (3.60)

Inverse transformation for λ

Setting y/R = φ1, the footpoint latitude, equation (3.22) is

λ (x,y) = tan−1 [sinh(x/R)sec(y/R)] = tan−1 [c−1
1 sinh(x/R)

]
.

Since sinh(x/R)� 1 we can expand with (E.20) and then substitute with (E.21) giving

λ (x,y) =
1
c1

(
x
R
+

1
6

x3

R3 + · · ·
)
− 1

3c3
1

( x
R
+ · · ·

)3
+ · · ·

=
1
c1

( x
R

)
+

1
c1

(
1
6
− 1

3
c−2

1

)( x
R

)3
+ · · ·

=
1
c1

( x
R

)
− (1+2t2

1)

6c1

( x
R

)3
+ · · · where m(φ1) = y. (3.61)
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Inverse transformation for φ

Setting y/R = φ1 in equation (3.23) gives

φ(x,y) = sin−1 [sech(x/R)sin(y/R)] = sin−1 [s1 sech(x/R)] .

Use (E.24) to write

s1 sech(x/R) = s1

(
1− 1

2

( x
R

)2
+

5
24

( x
R

)4
+ · · ·

)
= s1 + z with z = s1

(
−1

2

( x
R

)2
+

5
24

( x
R

)4
+ · · ·

)
Using (E.8) with b = s1 we obtain

φ(x,y) = sin−1 s1 +
s1

(1− s2
1)

1/2

(
−1

2

( x
R

)2
+

5
24

( x
R

)4
)

+
1
2

s1

(1− s2
1)

3/2 s2
1

(
−1

2

( x
R

)2
+ · · ·

)2

+ · · ·

= φ1−
t1
2

( x
R

)2
+

t1
24

(5+3t2
1)
( x

R

)4
+ · · · . where m(φ1) = y. (3.62)

Series expansion for the scale factor

Using the binomial series (E.29) with z = −sin2
λ cos2 φ = −c2 sin2

λ and substituting for
sinλ with (E.13), we find that equation (3.29) gives

k(λ ,φ) = [1− sin2
λ cos2

φ ]−1/2

= 1+
1
2

c2
(

λ − 1
6

λ
3 + · · ·

)2

+
3
8

c4 (λ −·· ·)4

= 1+
1
2

c2
λ

2 +
1
24

c4
λ

4(5−4t2)+ · · · (3.63)

Similarly equations (3.30) and (E.22) give

k(x,y) = cosh
( x

R

)
= 1+

1
2!

( x
R

)2
+

1
4!

( x
R

)4
+ · · · . (3.64)

Series expansion for convergence

Equation (3.42) is γ(λ ,φ)= tan−1
[

tanλ sinφ
]
. Expanding tanλ with (E.15) and using the

expansion for arctan in equation (E.20) gives

γ(λ ,φ) =s(λ +(1/3)λ 3 + · · ·)− (1/3)s3(λ + · · ·)3

=sλ +
1
3

sc2
λ

3 + · · · (3.65)
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Equation (3.43) is

γ(x,y)= tan−1 [ tanh(x/R) tan(y/R)
]
= tan−1 [t1 tanh(x/R)

]
.

Expanding tanh(x/a) for small x with (E.23) and again using (E.20) for arctan gives

γ(x,y) = t1

(
x
R
− 1

3

( x
R

)3
+ · · ·

)
− 1

3
t3
1

( x
R
+ · · ·

)3

= t1
( x

R

)
− 1

3
t1(1+ t2

1)
( x

R

)3
+ · · · where m(φ1) = y. (3.66)

3.9 Secant TMS

In Section 2.7 we showed how the NMS was modified to obtain greater accuracy over
wider areas by reducing the scale factor on the equator. We do the same for the TMS,
reducing the scale on the central meridian by multiplying the transformation formulae in
equations (3.13) by a factor of k0. The corresponding modifications for the inverses, scale
factors and convergence are easily deduced: they are listed below along with the corre-
sponding series solutions. On the central meridian we now have y(0,φ) = k0m(φ) where
we still have m(φ) = Rφ . The corresponding definition of the footpoint latitude becomes

m(φ1) =
y
k0
. (3.67)

We continue to use the abbreviations for the trig functions of φ and φ1 (equations 3.57, 3.58)

Direct transformations

x(λ ,φ) =
1
2

k0R ln
[

1+ sinλ cosφ

1− sinλ cosφ

]
= k0R

(
cλ +

1
6

c3
λ

3(1− t2)+ · · ·
)

(3.68)

y(λ ,φ) = k0R tan−1 [secλ tanφ ] = k0m(φ)+k0R
(

sc
2

λ
2+

sc3λ 4

24
(
5−t2)+ · ·) (3.69)

Inverse transformations

λ (x,y) = tan−1
[

sinh
x

k0R
sec

y
k0R

]
=

1
c1

(
x

k0R

)
− (1+2t2

1)

6c1

(
x

k0R

)3

+ · · · (3.70)

φ(x,y) = sin−1
[

sech
x

k0R
sin

y
k0R

]
= φ1−

t1
2

(
x

k0R

)2

+
t1
24

(5+3t2
1)

(
x

k0R

)4

+ · ·
(3.71)

Convergence

γ(λ ,φ) = tan−1(tanλ sinφ) = sλ +
1
3

sc2
λ

3 + · · · (3.72)

γ(x,y) = tan−1
(

tanh
x

k0R
tan

y
k0R

)
= t1

(
x

k0R

)
− 1

3
t1(1+ t2

1)

(
x

k0R

)3

+ · · · (3.73)
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Scale factors

k(λ ,φ) =
k0

(1− sin2
λ cos2 φ)1/2

= k0

[
1+

1
2

c2
λ

2 +
1
24

c4
λ

4(5−4t2)+ · · ·
]

(3.74)

k(x,y) = k0 cosh
(

x
k0R

)
= k0

[
1+

1
2

(
x

k0R

)2

+
1
24

(
x

k0R

)4

+ · · ·
]

(3.75)

Consider the scale factor in terms of projection coordinates, that is k(x,y). If we choose
k0 = 0.9996 then we find that the scale is true (k=1) when x/R = ±0.0282 corresponding
to x = ±180km (approximately). Once outside these lines the accuracy decreases as k
increases. The value of k reaches 1.0004 when x = 255km so that k increases from 1 to
1.0004 in a distance of 75km. This is less than half of the distance over which the scale
changes from k = 0.9996 on the central meridian to k = 1 at x = 180km.

Thus we see that the modified TMS is very accurate, within 0.04% over a width of
approximately 510km. We shall see later that this includes most of the area covered by the
British grid. These values are only slightly altered on the ellipsoid (TME) but the lines of
unit scale are no longer straight on the projection.
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Blank page. A contradiction.
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Chapter4
NMS to TMS by complex variables

Abstract

Complex variable theory is used to derive TMS from NMS by closed formulae
and Taylor series expansions. Scale and convergence are written in terms of the
derivative of the complex function describing the transformation.

4.1 Introduction

In Chapter 2 we derived the NMS projection: it takes a point P(φ ,λ ) on the sphere to a
point P′ on a plane with projection coordinates (λ ,ψ) where (from 2.55)

ψ = ln
[

tan
(

φ

2
+

π

4

)]
= tanh−1(sinφ) = gd−1

φ . (4.1)

In Chapter 3 we derived the TMS projection: it takes a point P(φ ,λ ) on the sphere to a
point P′′ on a plane with projection coordinates (x,y) where (from 3.13)

x(φ ,λ ) = R tanh−1[sinλ cosφ ], , (4.2)

y(φ ,λ ) = R tan−1 [secλ tanφ ] . (4.3)

In addition to these exact closed forms we obtained low order series such as (3.59–3.66):

x(λ ,φ) = Rcλ +
1
6

Rc3(1− t2)λ 3 + · · · , (4.4)

y(λ ,φ) = Rφ +
Rsc
2

λ
2 +

Rsc3λ 4

24
(
5− t2)+ · · · . (4.5)

We shall show how the above equations for TMS, both exact closed forms and low order
series, may be derived from NMS by using the theory of complex variables. This should be
possible since both NMS and TMS are conformal transformations from the sphere and the
theory of analytic complex functions incorporates conformality in a natural way.

Let (λ ,ψ) be the real and imaginary axes of a complex ζ -plane with ζ = λ+iψ . Like-
wise, (x,y) are the real and imaginary axes of a complex z-plane with z = x+iy. For the
direct transformation we seek functions x(λ ,ψ) and y(λ ,ψ) and for the inverse transforma-
tions functions λ (x,y) and ψ(x,y). The transformations to and from the sphere are accom-
plished through the known relations between ψ and φ . Almost any function z(ζ ) defines a
conformal transformation between the two complex planes but we shall find that imposition
of boundary conditions on the central meridian fixes the function uniquely.
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Figure 4.1

Figure 4.1 (with a→R twice) summarizes the properties of the two projections. A gen-
eral point P on the sphere with coordinates (λ ,φ) projects into P′(λ ,ψ) for NMS and
P′′(x,y) for TMS A general point K(0,φ) on the central meridian of the sphere, taken as the
Greenwich meridian for simplicity, projects into points K′(0,ψ) and K′′(0,y).

NMS is conformal, of finite extent in λ and infinite extent in ψ . It is true to scale on the
equator: k = 1 when φ = 0 (equation 2.21).

TMS is also conformal, of finite extent in y and infinite extent in x. It is true to scale
on the central meridian: k = 1 when x = 0, (equation 3.30). Equations 3.13 also imply that
where λ = 0 we must have y(0,φ)=Rφ =m(φ). We shall show that if we demand that TMS
has these properties then the functions x(λ ,ψ) and y(λ ,ψ) are completely determined.

The meridian distance as a function of ψ

The condition that λ=0 maps to x=0 is trivial but the second, true scale on the central
meridian, implies that y(0,ψ) must equal the meridian distance which we have written as a
function of φ , namely m(φ) =Rφ . It is convenient to introduce M(ψ), the meridian distance
as a function of ψ , by

M(ψ) = m(φ(ψ)) = Rφ(ψ), (4.6)

and write the scale condition in two equivalent ways.

y(0,ψ) = M
(
ψ
)
, (4.7)

y(0,ψ(φ)) = m(φ) = Rφ . (4.8)

On the sphere we can use any one of the equations (2.56) to obtain an explicit expression
for M(ψ): we choose

M(ψ) = R tan−1 [sinhψ
]
. (4.9)

In subsequent calculations we need the first four derivatives of M(ψ) with respect to ψ .
These are straightforward enough to obtain as functions of ψ , For example

M′(ψ) =
Rcoshψ

1+ sinh2
ψ

= Rsechψ. (4.10)
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However, it will prove more useful to express the derivatives of M in terms of φ . For
example we have

M′(ψ(φ))≡ dM(ψ(φ))

dψ
=

dm(φ)

dφ

dφ

dψ
= Rcosφ , (4.11)

where we have used the defining equation for NMS (2.25)

dψ

dφ
= secφ (4.12)

Proceeding in this way we can construct the first four derivatives of M(ψ) with respect to ψ

but with the results expressed as functions of φ . Using the compact notation of Section 3.8,
( s=sinφ etc. ).

M′ = Rcosφ = Rc,

M′′ =
d(Rc)

dφ

dφ

dψ
=−Rsc,

M′′′ =−R(c2− s2)c =−Rc3(1− t2),

M′′′′ =−R(−3sc2−2sc2 + s3)c = Rsc3(5− t2). (4.13)
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Figure 4.2

The footpoint parameter ψ1

In Section 3.1, where we discussed the inverse TMS transformations, we introduced the
footpoint and the footpoint latitude. We shall drive the inverse transformations from TMS
to NMS as Taylor series expansions about the footpoint parameter ψ1. Figure 4.2 shows
the (x,y) plane of TMS and the central meridians only of NMS and the sphere. For any point
P′′(x,y) its footpoint is at K′′(0,y). The footpoint latitude is that of the point K(0,φ1) on the
sphere such that m(φ1) = y: the footpoint parameter is the ordinate of that point K′(0,ψ1)
in the NMS plane such that M(ψ1) = y. We have

y = m(φ1) = Rφ1 = M(ψ1) = R tan−1 sinhψ1. (4.14)
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Conformality and complex functions

There is a very brief introduction to the theory of complex functions in Appendix G (and
in the first chapter of any book on complex functions). The central point is that a complex
function, w(z), of a complex variable z, has a unique derivative independent of direction if,
and only if, the Cauchy–Riemann conditions are satisfied: in the notation of this section
the partial derivatives of the real and imaginary parts of z(ζ ), namely x(λ ,ψ) and y(λ ,ψ),
must satisfy

CAUCHY–RIEMANN xλ = yψ , yλ =−xψ (4.15)

In Appendix G we show that if the Cauchy-Riemann conditions are satisfied then the trans-
formation preserves angles. Two lines intersecting at an angle α at a point P in the ζ -plane
intersect at the same angle when transformed to the z-plane: the definition of conformality.

4.2 Closed formulae for the TMS transformation

The transformation z(ζ ) from the ζ -plane to the z-plane must satisfy boundary conditions

x(0,ψ) = 0, y(0,ψ(φ)) = m(φ) = Rφ , (4.16)

or z(0,ψ) = iRφ = iRgdψ = Rgd−1(iψ) = Rgd−1(Imζ ), (4.17)

where we have set φ = gdψ (equation 2.56) and igd(ψ) = gd−1(iψ) (equation C.63).
Therefore it is “obvious” that we should consider the transformation

z(ζ ) = Rgd−1(ζ ) (4.18)

or, in full, x(λ ,ψ)+ i y(λ ,ψ) = Rgd−1(λ + iψ). (4.19)

When λ=0, this becomes

x(0,ψ)+ i y(0,ψ) = Rgd−1(iψ) = iRgd(ψ) = iRφ ,

reproducing the boundary condition as above.

Comment on notation. In more advanced treatments, such as Lee (1976) and Karney
(2011), the complex planes are chosen with the imaginary axes along the equator and the
real axis along the central meridian. As a result the transformation is simply z = Rgd(ζ )
with ζ = ψ+iλ and z = y+ ix. The final results are the same.

Evaluating the real and imaginary parts of Equation 4.18 and its inverse, ζ = gd(z/R), is
straightforward but non-trivial. The details are given in Appendix G, Equations G.24–G.40.
The results are

x = R tanh−1 [sinλ sechψ] , λ = tan−1 [sinh(x/R)sec(y/R)] ,

y = R tan−1 [secλ sinhψ] , ψ = tanh−1 [sech(x/R)sin(y/R)] . (4.20)

From Equation 2.55 we substitute sechψ = cosφ , sinhψ = tanφ and tanhψ = sinφ to
give the direct and inverse equations for TMS, 3.13 and 3.22.
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The Cauchy–Riemann conditions

To check the Cauchy–Riemann equations (4.15) we evaluate the partial derivatives of x
and y from Equations 4.20 (setting R=1 for clarity),

tanhx = sinλ sechψ, tany = secλ sinhψ, (4.21)

(sech2x)xλ = cosλ sechψ, (sec2y)yλ = sinλ sec2
λ sinhψ, (4.22)

(sech2x)xψ =−sinλ sinhψ sech2
ψ, (sec2y)yψ = secλ coshψ (4.23)

and simplify using

sech2x = 1− sin2
λ sech2

ψ = sech2
ψ
[

cosh2
ψ− sin2

λ
]
, (4.24)

sec2y = 1+ sec2
λ sinh2

ψ = sec2
λ
[

cosh2
ψ− sin2

λ
]
. (4.25)

4.3 Transformation to the TMS series
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Figure 4.3

The steps of the transformation are summarized in the figure: anti-clockwise from the
sphere to the normal Mercator projection, to the (λ ,ψ) complex plane and then to the (x,y)
complex plane by means of the function z(ζ ). This transformation is expressed as a complex
Taylor series expansion about a point ζ0 = iψ0 on the imaginary axis of the ζ -plane. The
real and imaginary parts of the complex series generate the direct series Equations 4.4, 4.4.
We expect that the series to be valid for small values of |ζ−ζ0|.

The coefficients in the Taylor series are related to the values of z(ζ ) and its derivatives
at ζ0. The clever trick is to use the fact that the derivatives of an analytic function may be
evaluated in any direction in the complex plane. By taking them along the imaginary axis
we shall find that they reduce to derivatives of the meridian distance function M(ψ) with
respect to ψ . These are the derivatives evaluated in Section 4.1.

The inverse transformations λ (x,y) and ψ(x,y) are evaluated by inverting the complex
Taylor series and then taking the real and imaginary parts. Finally φ(x,y) is calculated from
ψ(x,y) by a further Taylor series.
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The direct complex Taylor series

The Taylor series for z(ζ ) about a point ζ0 = iψ0 on the imaginary axis of the ζ -plane is

z(ζ ) = z0 +(ζ −ζ0)z′(ζ0)+
1
2!
(ζ −ζ0)

2z′′(ζ0)+
1
3!
(ζ −ζ0)

3z′′′(ζ0)+ · · · (4.26)

and it must satisfy boundary conditions

x(0,ψ) = 0, (4.27)

y(0,ψ) = M(ψ). (4.28)

so that at ζ = ζ0 = iψ0
z0 = z(ζ0) = iy0 = iM(ψ0) = iM0 (4.29)

Construct the derivatives of z(ζ ) from first principles, (as in G.45):

z′(ζ ) = lim
δζ→0

z(ζ +δζ )− z(ζ )
δζ

. (4.30)

Conformality demands that z(ζ ) be analytic and this limit must be independent of direction:
we choose to take it in the ψ direction so that λ = 0 and δζ = iδψ . Therefore we have

z′(ζ ) =
(

1
i

d
dψ

)
z(ζ )

∣∣∣∣
λ=0

=

(
1
i

d
dψ

)
iM(ψ) (4.31)

Therefore the derivatives at ζ0 are

z′(ζ0) =

(
−i

d
dψ

)(
iM(ψ)

)∣∣∣∣
ψ0

= M′(ψ0),

z′′(ζ0) =

(
−i

d
dψ

)(
M′(ψ)

)∣∣∣∣
ψ0

=−iM′′(ψ0),

z′′′(ζ0) =

(
−i

d
dψ

)(
− iM′′(ψ)

)∣∣∣∣
ψ0

=−M′′′(ψ0),

z′′′′(ζ0) =

(
−i

d
dψ

)(
−M′′′(ψ)

)∣∣∣∣
ψ0

= iM′′′′(ψ0). (4.32)

Finally, if we abbreviate M′(ψ0)= M′0, M′′(ψ0)=M′′0 etc., the Taylor series (4.26) may be
written as

z = z0+(ζ−ζ0)M′0−
i

2!
(ζ−ζ0)

2M′′0−
1
3!
(ζ−ζ0)

3M′′′0 +
i

4!
(ζ−ζ0)

4M′′′′0 + · · · (4.33)
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The direct series for x and y

When we derived the direct series for TMS in Section 3.8 we expanded x and y as power
series in λ keeping φ constant, corresponding to ψ constant in the ζ -plane. Therefore, if we
start from a given point at ζ = λ + iψ , we must choose ζ0 at K′ with the same ordinate, that
is ζ0 = iψ: see Figure 4.5. In the Taylor series (4.33) we therefore set ζ−ζ0 = (λ+iψ)−
iψ = λ so that the complex series reduces to a power series in λ with complex coefficients.
Since M and its derivatives are evaluated at ψ0 = ψ we have z0 = iM0→iM and M′0→M′

etc. The series is now

z = x+ iy = iM+λM′− i
2!

λ
2M′′− 1

3!
λ

3M′′′+
i

4!
λ

4M′′′′+ · · · (4.34)

The real and imaginary parts of equation (4.34) give x and y as functions of λ and ψ . The
derivatives of M are real so that the transformations from NMS→TMS are

x(λ ,ψ) = λM′− 1
3!

λ
3M′′′+ · · · (4.35)

y(λ ,ψ) = M− 1
2!

λ
2M′′+

1
4!

λ
4M′′′′+ · · · . (4.36)

On substituting for M and its derivatives using equations (4.13), we obtain the corresponding
expressions in terms of λ and φ (with s = sinφ etc. )

x(λ ,φ) = Rcλ +
1
3!

Rc3(1− t2)λ 3 + · · · , (4.37)

y(λ ,φ) = Rφ +
1
2!

Rscλ
2 +

1
4!

Rsc3(5− t2)λ
4 + · · · . (4.38)

These results agree with the expansions obtained in equations (3.59, 3.60).

The Cauchy–Riemann equations

It is instructive to verify that the (plane to plane) Cauchy–Riemann equations (4.15) are
indeed satisfied by equations (4.35) and (4.36) (at least if the series are continued to infinity).
Evaluating the four partial derivatives we have

xλ = yψ = M′− 1
2!

λ
2M′′′+ · · · (4.39)

yλ =−xψ =−λM′′+
1
3!

λ
3M′′′′+ · · · . (4.40)
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Note also that the equations (4.37, 4.38) satisfy the Cauchy–Riemann equations (3.53)
which apply to the transformation from the sphere to the TMS plane. Explicitly

xλ = cosφ yφ = Rc+
1
2!

Rc3(1− t2)λ 2 · · · , (4.41)

yλ =−cosφ xφ = Rscλ +
1
3!

Rsc3(5− t2)λ
3 + · · · . (4.42)

The inverse complex series: method of Lagrange series reversion

The simplest method of obtaining the inverse series is to use the Lagrange method described
in Appendix B; in particular we use the reversion of a fourth order polynomial as described
in Section B.4. The beauty of the Lagrange expansions for simple polynomials is that the
coefficients can be determined once and for all and applied in various contexts as need
arises.

We start by writing the direct Taylor series (4.33) as

z− z0

M′0
= (ζ−ζ0)+

b2

2!
(ζ−ζ0)

2 +
b3

3!
(ζ−ζ0)

3 +
b4

4!
(ζ−ζ0)

4 + · · · (4.43)

where

b2 =−i
M′′0
M′0

, b3 =−
M′′′0
M′0

, b4 = i
M′′′′0
M′0

. (4.44)

The series (4.43) and (B.13) are identical if we replace z and ζ in the latter by (z− z0)/M′0
and ζ −ζ0 respectively. Using (B.14) we can immediately find the inverse series of (4.43):

ζ −ζ0 =

(
z− z0

M′0

)
− p2

2!

(
z− z0

M′0

)2

− p3

3!

(
z− z0

M′0

)3

− p4

4!

(
z− z0

M′0

)4

+ · · · (4.45)

where the p-coefficients follow from (B.12):

p2 = b2 =− iM′′0
M′0

p3 = b3−3b2
2 =−M′′′0

M′0
+3

(M′′0 )
2

(M′0)2

p4 = b4−10b2b3 +15b3
2 =

iM′′′′0
M′0
−10i

M′′0 M′′′0
(M′0)2 +15i

(M′′0 )
3

(M′0)3 . (4.46)

Using equations (4.13), these become

p2 = is0

p3 = c2
0(1+2t2

0)

p4 =− is0c2
0(5+6t2

0), (4.47)

with c0 = cosφ0 etc. where φ0 = gdψ0.
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The inverse series for the Mercator parameter

For the direct series we kept ψ constant in the ζ plane, Figure 4.5. For the inverse we
keep y constant in the z-plane, Figure 4.6: K′′ is the footpoint for P′′. Therefore z0 = iy
and z− z0 = (x+ iy)− iy = x and therefore the complex series (4.45) reduces to a power
series in x with the complex coefficients given in Equations 4.46. The coefficients are
expressed in terms of the derivatives of the meridian function M(ψ) evaluated at ψ1 but
if we use equations (4.13) the derivatives must be evaluated at the footpoint latitude φ1.
Setting M1 = M(ψ1) = m(φ1) = y etc. equation (4.45) becomes

(λ + iψ)− iψ1 =
x

M′1
− p2

2!

(
x

M′1

)2

− p3

3!

(
x

M′1

)3

− p4

4!

(
x

M′1

)4

+ · · · (4.48)

and the real and imaginary parts are

λ (x,y) =
x

M′1
− 1

3!
p3

(
x

M′1

)3

+ · · · (4.49)

ψ(x,y) = ψ1−
1
2!

Im(p2)

(
x

M′1

)2

− 1
4!

Im(p4)

(
x

M′1

)4

+ · · · . (4.50)

Substitute for the p-coefficients (4.47) and M′1 (from 4.13), all evaluated at the footpoint
latitude φ1 = φ(ψ1) = gdψ1.

λ (x,y) =
1
c1

x
R
− 1

3!
1
c1

[
1+2t2

1
]( x

R

)3
+ · · · , (4.51)

ψ(x,y) = ψ1−
1
2!

t1
c1

( x
R

)2
+

1
4!

t1
c1

[
5+6t2

1
]( x

R

)4
+ · · · , (4.52)

where c1=cosφ1, t1= tanφ1, m(φ1) = Rφ1 = y and ψ1 = gd−1
φ1 = tanh−1 sinφ1. Term by

term the derivatives satisfy the Cauchy-Riemann conditions for the inverse function ζ (z):

λx = ψy =
1

Rc1
− 1+2t2

1
2Rc1

( x
R

)2
+ · · · , (4.53)

λy =−ψx =
t1

Rc1

x
R
− t1

6Rc1

[
5+6t2

1
]( x

R

)3
+ · · · . (4.54)
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Relating latitude and the Mercator parameter

The series (4.53) for λ is in agreement with equation (3.61) but we must now derive the
series for φ from that for ψ .

Equation 4.52 determines ψ −ψ1 as a power series in x with coefficients evaluated at
the footpoint latitude φ1. To obtain the corresponding series for φ we first construct the
Taylor series expansion of φ(ψ) about the footpoint parameter ψ1:

φ(ψ) = φ(ψ1)+(ψ−ψ1)
dφ

dψ

∣∣∣∣
1
+

1
2!
(ψ−ψ1)

2 d2φ

dψ2

∣∣∣∣
1
+ · · · . (4.55)

The derivatives of φ(ψ) are easily obtained from the defining equation for ψ , (2.25):

dψ

dφ
= secφ ,

dφ

dψ
=

(
dψ

dφ

)−1

= cosφ , (4.56)

d2φ

dψ2 =
d

dψ
(cosφ) =−sinφ

dφ

dψ
=−sinφ cosφ . (4.57)

Substituting these derivatives into the Taylor series, and setting φ(ψ1) = φ1, we have

φ = φ1 +(ψ−ψ1)cosφ1−
1
2!
(ψ−ψ1)

2 sinφ1 cosφ1 + · · · . (4.58)

The inverse series for latitude

In Equation 4.58 we substitute for ψ−ψ1 from equation (4.52). To order (x/a)4,

φ(x,y) = φ1 +

[
− 1

2!

( x
R

)2
+

1
4!

( x
R

)4 [
5+6t2

1
]] t1

c1
c1

− 1
2!

[
− 1

2!

( x
R

)2
+ · · ·

]2( t1
c1

)2

s1c1

which simplifies to
φ(x,y) = φ1−

t1
2

( x
R

)2
+

t1
24
[
5+3t2

1
]( x

R

)4
+ · · · , (4.59)

where m(φ1) = Rφ1 = y, in agreement with equation (3.62).

4.4 The inverse complex series: an alternative method

Another way of deriving the inverse series is to take the development given in the first part
of Section 4.3 and run it backwards from the z-plane to the ζ -plane. That is, we assume the
existence of an analytic function ζ (z) such that (a) the central meridian maps from x = 0 to
λ = 0 and (b) ψ(0,y) is prescribed. Therefore

ζ (z) = λ (x,y)+ iψ(x,y), (4.60)

λ (0,y) = 0, (4.61)

ψ(0,y) = M (y), (4.62)
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where M (y) is an inverse to M(ψ) in the sense that M
(
M (y)

)
= y and M

(
M(ψ)

)
= ψ . The

Taylor series analogous to (4.33) is then an expansion of ζ (z) about a point on the z0 = iy0
on the y-axis of the z-plane:

ζ (z) = ζ0+(z−z0)M ′0−
i

2!
(z−z0)

2M ′′0−
1
3!
(z−z0)

3M ′′′0 +
i

4!
(z−z0)

4M ′′′′0 + · · · , (4.63)

where ζ0 = iψ0 = iM (y0) and the derivatives of M are with respect to y at y0.

Now although it is straightforward to construct the function M (y) on the sphere, we
shall construct its derivatives from those of M(ψ). We start by differentiating the identities

y = M(M (y)) = M(ψ), (4.64)

ψ = M (M(ψ)) = M (y), (4.65)

to give
dy
dψ

= M′(ψ),
dψ

dy
= M ′(y). (4.66)

Therefore, since M′(ψ) 6= 0 (4.10) we have

M ′(y) =
dψ

dy
=

1
M′(ψ)

, (4.67)

and in general
d( )
dy

=
1

M′(ψ)

d( )
dψ

. (4.68)

We now calculate all the derivatives in equation (4.63). For compactness we suppress the
argument ψ in M(ψ) and all its derivatives, M′(ψ), M′′(ψ) etc. Comparing the results with
the p-coefficients in equation (4.46) we find

M ′(y) =
1

M′
=

1
M′
,

M ′′(y) =
1

M′
d

dψ

[
M ′(y)

]
=

1
M′

d
dψ

[
1

M′

]
=− M′′

(M′)3 =
−ip2

M′2
,

M ′′′(y) =
1

M′
d

dψ

[
M ′′(y)

]
=

1
M′

d
dψ

[−M′′

(M′)3

]
=− M′′′

(M′)4 +3
(M′′)2

(M′)5 =
p3

M′3
,

M ′′′′(y) =
1

M′
d

dψ

[
M ′′′(y)

]
=− M′′′′

(M′)5 +10
M′′M′′′

(M′)6 −15
(M′′)3

(M′)7 =
ip4

M′4
. (4.69)

Substituting these derivatives (evaluated at y0 for M and at φ0 for M) into equation (4.63)
gives a complex series identical to that of (4.45) and the same results follow. We choose not
to follow this method since the calculation of the derivatives to eighth order for the ellipsoid
becomes very intricate.
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Figure 4.7

4.5 Scale and convergence in TMS

Units: We set R=1 throughout this section.

Consider an arbitrary conformal transformation described by the analytic function z(ζ ).
The scale factor m is the ratio of the lengths of small elements dz and dζ :

m =
|dz|
|dζ | = |z

′(ζ )|, 1
m

=
|dζ |
|dz| = |ζ

′(z)|. (4.70)

The complex displacements may be written as

dζ = |dζ |exp iα, dz = |dz|exp iβ , (4.71)

so that the angle of rotation between the elements is β −α = arg z′(ζ ). This result apples to
any small element but in particular it applies to an element along the ψ-axis in the ζ -plane.
If that element coincides with a meridian, as it does for NMS, then the corresponding angle
in the projection z-plane defines the angle between the projected meridian and the y-axis.
This is just the convergence as defined in Section 3.6. Therefore

γ = argz′(ζ ) =−argζ
′(z). (4.72)

The derivative z′(ζ ) determines both the scale factor and the convergence.

The freedom to choose the derivatives of an analytic function in any direction allows us
to take them along the real axis. Therefore

z′(ζ ) = xλ + iyλ , ζ
′(z) = λx + iψx. (4.73)

Since x and y are functions of λ and ψ , and vice-versa, we have

m(λ ,ψ) =
√

x2
λ
+ y2

λ
,

1
m(x,y)

=
√

λ 2
x +ψ2

x , (4.74)

and

tanγ(λ ,ψ) =
yλ

xλ

, tanγ(x,y) =−ψx

λx
. (4.75)

Note that

m(λ ,ψ) = xλ secγ(λ ,ψ),
1

m(x,y)
= λx secγ(x,y). (4.76)
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Exact formulae for NMS to TMS scale factor and convergence

The real and imaginary parts of z(ζ ) = gd−1
ζ are given in (4.20). Setting R=1 for clarity,

tanhx = sinλ sechψ, tany = secλ sinhψ, (4.77)

(sech2x)xλ = cosλ sechψ, (sec2y)yλ = sinλ sec2
λ sinhψ, (4.78)

tanλ = sinhxsecy tanhψ = sechxsiny (4.79)

(sec2
λ )λx = coshxsecy (sech2

ψ)ψx =−sinhxsech2 xsiny. (4.80)

Simplify using

sech2x = 1− sin2
λ sech2

ψ = sech2
ψ
[

cosh2
ψ− sin2

λ
]
, (4.81)

sec2y = 1+ sec2
λ sinh2

ψ = sec2
λ
[

cosh2
ψ− sin2

λ
]
, (4.82)

sec2
λ = 1+ sinh2x sec2 y = sec2y [cosh2 x− sin2y], (4.83)

sech2
ψ = 1− sech2x sin2 y = sech2x [cosh2 x− sin2y]. (4.84)

The scale factors and convergence for the transformation z(ζ ) are therefore.

m(λ ,ψ) =
√

x2
λ
+ y2

λ
=

1√
cosh2

ψ− sin2
λ

(4.85)

m(x,y) =
1√

λ 2
x +ψ2

x
=

√
cosh2 x− sin2y, (4.86)

tanγ(λ ,ψ) =
yλ

xλ

= tanλ tanhψ, (4.87)

tanγ(x,y) =−ψx

λx
= tanhx tany. (4.88)

Exact formulae for sphere to TMS scale factor and convergence

The scale factor from the sphere to TMS is the product of the scale factor from the sphere
to NMS and that for transformation z(ζ ) from NMS to TMS. Using the NMS scale fac-
tors (2.61), (2.62) and equations (2.55), (4.79)b to express coshψ in terms of φ and (x,y)
respectively

k(λ ,φ) = secφ m(λ ,ψ) =
secφ√

cosh2
ψ− sin2

λ

=
1√

1− sin2
λ cos2 φ

(4.89)

k(x,y) = coshψ(x,y)m(x,y) =

√
cosh2 x− sin2y√

1− sech2 xsin2 y
= coshx, (4.90)

Convergence is additive but from sphere to NMS it is zero. Therefore equations 4.87, 4.88
give the sphere to TMS convergence. Setting tanhψ = sinφ in 4.87

γ(λ ,φ) = tan−1[tanλ sinφ ], (4.91)

γ(x,y) = tan−1[tanhx tany]. (4.92)

These results are in agreement with Equations 3.72–3.75 (after restoring R).
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Direct series for NMS to TMS scale factor and convergence

We work from the series solutions (4.37) and (4.38) in which we neglected terms of O(λ 5).
Therefore we must neglect terms of O(λ 4) in the expressions for the derivatives, (4.41)
and (4.42), and any expressions derived from them. Inserting these derivatives into equa-
tion (4.87) gives (R=1, s=sinφ etc. )

tanγ =
yλ

xλ

=
scλ + 1

6 sc3[5− t2]λ 3 + · · ·
c+ 1

2 c3[1− t2]λ 2 · · · (4.93)

= sλ

(
1+

1
3
[1+ t2]c2

λ
2 + · · ·

)
. (4.94)

Using the series for arctan (equation E.20),

γ = tan−1(tanγ) = tanγ− 1
3
(tanγ)3 + · · · (4.95)

= sλ

(
1+

1
3

c2
λ

2 + · · ·
)
. (4.96)

To the same order

secγ =
√

1+ tan2 γ = 1+
1
2

tan2
γ + · · ·= 1+

1
2

s2
λ

2 + · · · . (4.97)

We calculate the NMS to TMS scale factor by using (4.76) rather than (4.74). (The method
is easier for the more involved series for TME.)

m(λ ,φ) = xλ secγ = c
(

1+
1
2

c2
λ

2 + · · ·
)

(4.98)

Direct series for sphere to TMS scale factor and convergence

The sphere to TMS scale factor is given by multiplying this result by the sphere to NMS
scale factor, secφ = 1/c.

k(λ ,φ) =
1
c

m(λ ,φ) =

(
1+

1
2

c2
λ

2 + · · ·
)

(4.99)

in agreement with the leading terms of the expansion in equation 3.74. The series (4.96) for
the convergence is unchanged:

γ(λ ,φ) = sλ

(
1+

1
3

c2
λ

2 + · · ·
)
. (4.100)

where s=sinφ etc. This result in agreement with equation 3.72, neglecting O(λ 4).
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Inverse series for NMS to TMS scale factor and convergence

We neglected terms of O(x5) in the series for the inverse transformation, (4.51) and (4.52).
Therefore we must neglect terms of O(x4) in the expressions for the derivatives, (4.53)
and (4.54) and any expressions derived from them. Inserting the derivatives into equa-
tion (4.87) gives (R=1, s1=sinφ1 etc. )

tanγ =−ψx

λx
=

t1
c1

x− t1
6c1

[
5+6t2

1
]

x3+ · · · .
1
c1
− 1

2c1
[1+2t2

1 ]x2 + · · ·
(4.101)

= t1x
(

1− 1
3

x2 + · · ·
)
. (4.102)

Using the series for arctan (equation E.20),

γ = tan−1(tanγ) = tanγ− 1
3
(tanγ)3 + · · · (4.103)

= t1x
(

1− 1
3
[1+ t2

1 ]x
2 + · · ·

)
. (4.104)

To the same order

secγ =
√

1+ tan2 γ = 1+
1
2

tan2
γ + · · ·= 1+

1
2

t2
1 x2 + · · · . (4.105)

Therefore the NMS to TMS scale factor expressed in projection coordinates is given by

1
m(x,y)

=λx secγ =
1
c1

(
1− 1

2
[1+ t2

1 ]x
2 + · · ·

)
, (4.106)

m(x,y) =
1

λx secγ
= c1

(
1+

1
2
[1+ t2

1 ]x
2 + · · ·

)
. (4.107)

Inverse series for sphere to TMS scale factor and convergence

For the TMS scale factor we must multiply the above result by the sphere to NMS scale
factor, coshψ in (2.62). We can no longer simply use (4.79)b to express this factor in terms
of x and y: we have only the series for ψ at (4.52) with R=1:

ψ(x,y) = ψ1−
1
2!

t1
c1

x2 +
1
4!

t1
c1

[
5+6t2

1
]

x4+ · · · , (4.108)

We then substitute (ψ−ψ1) in a Taylor series expansion of coshψ about ψ1. Since the
derivatives of cosh are simply sinh, cosh, . . . alternating, we have

coshψ = coshψ1 +
1
1!

sinhψ1(ψ−ψ1)+
1
2!

coshψ1(ψ−ψ1)
2 + · · · . (4.109)
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Substitute ψ−ψ1 from 4.108 and neglect terms of order O(x4) and, at the same time, set
coshψ1 = secφ1 and sinhψ1 = tanφ1 from (2.55):

coshψ =
1
c1

(
1− 1

2
t2
1

( x
R

)2
+ · · ·

)
(4.110)

Therefore the sphere to TMS scale factor is

k(x,y) = coshψ m(x,y) =
(

1+
1
2

x2 + · · ·
)
, (4.111)

in agreement with the two leading terms of equation 3.75 (after restoring R) which are
just the leading terms of the expansion of coshx. This result is of course trivial, but we it
demonstrates the method we shall follow for the TME series.

The series (4.96) for the convergence is unchanged:

γ(x,y) = t1x
(

1− 1
3
(1+ t2

1)x
2 + · · ·

)
. (4.112)

where t1= tanφ1 and m(φ1) = y. This result is in agreement with equation 3.73.
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Chapter5
The geometry of the ellipsoid

Abstract

Geodetic and geocentric latitude. Parameters of the ellipsoid. Relation of
Cartesian and geographical coordinates. Reduced or parametric latitude. Cur-
vature. Distances on the ellipsoid. Meridian distance and its inverse. Auxiliary
latitudes: conformal, rectifying and authalic.

5.1 Coordinates on the ellipsoid

The Earth is more accurately modelled as an oblate ellipsoid of revolution. If the symmetry
axis is taken as OZ the Cartesian equation with respect to its centre is

X2

a2 +
Y 2

a2 +
Z2

b2 = 1, a> b. (5.1)

The definition of longitude λ is exactly the same as on the sphere. The geodetic latitude φ ,
which we will simply call ’latitude’, is the angle at which the normal at P intersects the
equatorial plane (Z = 0). The new feature is that the normal does not pass through the
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Figure 5.1

centre of the ellipsoid (except when P is on the equator and at the poles). The line joining
P to the centre defines the geocentric latitude φc. We introduce the notation p(φ) for the
distance PN of a point P from the central axis and we also set ν(φ) for the length CP of the
normal at P to its intersection with the symmetry axis. Therefore

p(φ) = ν(φ)cosφ =
√

X2 +Y 2. (5.2)
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5.2 The parameters of the ellipsoid

The parameter a is the equatorial radius and the parameter b is the distance from centre
to pole. The latter is often called the polar radius: this is misleading for there is no circle
involved. These parameters are the major and minor semi-axes of a meridional ellipse
defined by any meridian and its continuation over the poles. Instead of using (a,b) as the
basic parameters of the ellipse we can use the combination (a,e) where e is the eccentricity,
or (a, f ) where f is the (first) flattening. These parameters are defined and related by

b2 = a2(1− e2), f =
a−b

a
, e2 = 2 f − f 2 = f (2− f ). (5.3)

For numerical examples we use the values for the WGS84 ellipsoid:

a = 6378137.0m, e = 0.0818191908, f = 0.003352810,

b = 6356752.314m, e2 = 0.0066943799,
1
f
= 299.3249753. (5.4)

The flattening of the Earth is small. For example, in the figures on the previous page the
difference between a sphere of radius a and an ellipsoid with equatorial radius a would be
about the width of one of the lines in the figure. The ellipses shown here, and elsewhere,
are greatly exaggerated.

Other parameters used to describe an ellipse

Several other small parameters arise naturally in the study of the ellipse. We shall need the
second eccentricity, e′, and the third flattening n (rarely e1). They are defined by

e′2 =
a2−b2

b2 =
e2

1− e2 , n = e1 =
a−b
a+b

=
f

2− f
(5.5)

(The second flattening, defined as (a− b)/b is rarely used). There are many relations be-
tween all these parameters. For example we will need the following results:

a = b
(
1− e2)−1/2

= b
(

1+n
1−n

)
(5.6)

= b
(
1+2n+2n2 +2n3 + · · ·

)
, (5.7)

e2 = 1−
(

b
a

)2

= 1−
(

1−n
1+n

)2

=
4n

(1+n)2 (5.8)

= 4n(1−2n+3n2−4n3 + · · ·). (5.9)

5.3 Parameterisation by geodetic latitude

The equation of any meridian ellipse follows from (5.1) and (5.2):

p2

a2 +
Z2

b2 = 1. (5.10)
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Differentiating this equation with respect to p gives

dZ
d p

=− pb2

Za2 . (5.11)

Since the normal and tangent are perpendicular the product of their gradients is −1 and
therefore the gradient of the normal is

tanφ =−
(

dZ
d p

)−1

=
Za2

pb2 =
Z

p(1− e2)
. (5.12)

Eliminating Z from equations 5.10 and 5.12 gives

p2[1+(1− e2) tan2
φ ] = a2. (5.13)

Thus the required parameterisation is;

PN = p(φ) =
acosφ

[1− e2 sin2
φ ]1/2 , (5.14)

PM = Z(φ) =
a(1− e2)sinφ

[1− e2 sin2
φ ]1/2 . (5.15)

Since ν =CP = PN secφ = psecφ we have

CP = ν(φ) =
a

[1− e2 sin2
φ ]1/2

(5.16)

in terms of which

p(φ) = ν(φ) cosφ , (5.17)

Z(φ) = (1− e2)ν(φ) sinφ . (5.18)

The triangle OCE

We shall require the sides of the triangle ∆OCE defined by the normal and its intercepts on
the axes.

OE = OM−EM = p−Z cotφ

= ν cosφ − (1− e2)ν cosφ

= νe2 cosφ .

CE = νe2

OC = νe2 sinφ . (5.19)
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Figure 5.2
The sides of this small triangle are all of order ae2; for example at latitude ±45◦ the sides
OE and OC are about 30km and CE is about 42.5km.
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The relation between geodetic and geocentric latitudes

From Figure 5.1b and equations (5.17) and (5.18) we immediately obtain the relation be-
tween φ and φc:

tanφc =
Z
p
= (1− e2) tanφ . (5.20)

Clearly φ and φc are equal only at the equator, φ = 0, or at the poles, φ = π/2. Since
e2 ≈ 0.0067 the difference φ −φc at any other angle is small (and positive). It is a simple
exercise in calculus to find the position and magnitude of the maximum difference. First
write

tan(φ −φc) =
tanφ − tanφc

1+ tanφ tanφc
=

e2 tanφ

1+(1− e2) tan2 φ
. (5.21)

Differentiating with respect to φ gives

sec2(φ −φc)
d(φ −φc)

dφ
=

e2 sec2 φ
[
1− (1− e2) tan2 φ

][
1+(1− e2) tan2 φ

]2 . (5.22)

Therefore φ−φc has a turning point, clearly a maximum, when the right hand side vanishes
at tanφ = 1/

√
1− e2. Using the value of e for the WGS ellipsoid (equation 5.4) shows that

the maximum difference occurs at φ ≈ 45◦.095, for which φc ≈ 44◦.904 and the latitude
difference φ−φc ≈ 11.5′. (Note that e2 ≈ 0.00667 is the radian measure of 22.9′).

A comment on other latitudes
In addition to the geodetic latitude φ and geocentric latitude φc, we have already discussed
the isometric latitude ψ (the Mercator parameter in the notation of Sections 2.4 and 6.1)
and we shall meet four further latitude definitions. These are the reduced (or parametric)
latitude U (Section 5.5), and, in Section 5.10, three auxiliary latitudes: the rectifying lat-
itude µ , the conformal latitude χ and the authalic latitude ξ . With the exception of the
isometric latitude all of these latitudes coincide with the geodetic and geocentric latitudes
at the poles and on the equator and the maximum deviations from φ are no more than a few
minutes of arc. The isometric latitude agrees with the others at the equator (where it is zero)
but diverges to infinity at the poles: it is a radically different in character.

5.4 Cartesian and geographic coordinates

Using (5.17) and (5.18) the Cartesian coordinates of a point on the surface are

X(φ) = p(φ)cosλ = ν(φ)cosφ cosλ , (5.23)

Y (φ) = p(φ)sinλ = ν(φ)cosφ sinλ , (5.24)

Z(φ) = (1− e2)ν(φ)sinφ . (5.25)

For given X , Y, Z the inverse relations for φ and λ are

(a) λ = arctan
(

Y
X

)
, (b) φ = arctan

(
Z

(1− e2)
√

X2 +Y 2

)
. (5.26)
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The two dimensional coordinate system describing
points on the surface may be extended to a three di-
mensional coordinate system. Let H be a point at a
height h on the normal to the surface at the point P
with geographical coordinates φ and λ . The distance
of this point from the axis is now p+ hcosφ . Also,
from (5.19), we have EP =CP−CE = ν(1−e2). The
coordinates of H are

X(φ) =
(
ν(φ)+h

)
cosφ cosλ , (5.27)

Y (φ) =
(
ν(φ)+h

)
cosφ sinλ , (5.28)

Z(φ) =
(
(1− e2)ν(φ)+h

)
sinφ . (5.29)
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For the inverse relations dividing equation (5.28) by (5.27) gives λ explicitly, as in equa-
tion (5.26a). To find φ and h we can eliminate λ from (5.27) and (5.28) and rewrite equa-
tion (5.29) for Z to give √

X2 +Y 2 =
(
ν(φ)+h

)
cosφ , (5.30)

Z + e2
ν(φ)sinφ =

(
ν(φ)+h

)
sinφ . (5.31)

Dividing these equations gives an implicit equation for φ :

φ = arctan

[
Z + e2

ν(φ)sinφ√
X2 +Y 2

]
. (5.32)

There is no closed solution to this equation but we can develop a numerical solution by
considering the following fixed point iteration:

φn+1 = g(φn) = arctan

[
Z + e2

ν(φn)sinφn√
X2 +Y 2

]
, n = 0, 1, 2 . . . . (5.33)

Now in most applications we will have h� a so that a suitable starting approximation is
the value of φ obtained by using the h = 0 solution, equation (5.26b):

φ0 = arctan
[

Z

(1− e2)
√

X2 +Y 2

]
. (5.34)

If the iteration scheme converges so that φn+1→ φ∗ and φn→ φ∗ in (5.33) then φ∗ must be
the required solution of equation (5.32). The condition for convergence of this fixed point
iteration is that |g′(φ)|< 1: this is true here since g′(φ) = O(e2). Once we have found φ it
is trivial to deduce h from equation (5.30):

h = secφ

√
X2 +Y 2−ν(φ). (5.35)

The formulae developed in this section are used in the OSGB (1999) publications.
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5.5 The reduced or parametric latitude

There is another important and obvious parameterisa-
tion of the ellipse. Construct the auxiliary circle of
the ellipse: it is concentric and touches the ellipse at
the ends of its major axis so that the radius is equal
to a. Take a point P on the ellipse and project its or-
dinate until it meets the auxiliary circle at P′ and let
angle P′OA be U . The angle U is called the reduced
latitude (or parametric latitude) of the point P on the
ellipse. The points P and P′ clearly have the same ab-
scissa, p = acosU . Substituting this abscissa into the
equation of the ellipse (5.10) we have

�

�

�

�

�

�

��

��
��

Figure 5.4

Z = b
√

1− p2/a2 = bsinU. (5.36)

The pair of equations

p = acosU, Z = bsinU, (5.37)

constitutes the required parametric representation of the ellipse. At a general point the ordi-
nates OP = Z = bsinU and OP′ = asinU are in the ratio of b/a: the ellipse is a uniformly
squashed circle.

Relations between the reduced and geodetic latitudes

Comparing the parameterisations of p and Z in equations (5.17, 5.18) and (5.37) gives

p = ν(φ) cosφ = acosU,

Z = (1− e2)ν(φ) sinφ = bsinU.

The basic relation between U and φ could be taken as

acosU = ν(φ) cosφ , (5.38)

but it is more useful to divide the expressions for Z and p to find (using b = a
√

1− e2)

tanU =
√

1− e2 tanφ (5.39)

It will also be useful to have an expression for ν in terms of U . Using (5.38) and (5.16)

1− e2 cos2U = 1− e2ν2

a2 cos2
φ = 1− e2 cos2φ

1− e2 sin2
φ

=
1− e2

1− e2 sin2
φ
. (5.40)

ν =
a[

1− e2 sin2
φ
]1/2 =

a√
1− e2

[
1− e2 cos2U

]1/2 (5.41)
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We shall need the derivative of U with respect to φ . Differentiating (5.39) gives

sec2U
dU
dφ

=
√

1− e2 sec2
φ =

√
1− e2

[
1+

1
1− e2 tan2U

]
. (5.42)

dU
dφ

=
1− e2 cos2U√

1− e2
. (5.43)

The difference between reduced and geodetic latitudes
We could use the above derivatives to find the maximum difference between U and φ but
the result follows by simply comparing equations (5.20) and (5.39). They differ only in that
the factor of (1− e2) in (5.20) is replaced by

√
1− e2. Since the maximum value of φ−φc

occurred when tanφ = 1/
√

1− e2 we deduce that the maximum value of φ−U will occur
when tanφ = 1/ 4

√
1− e2. This corresponds to φ ≈ 45◦.048 for which the corresponding

value of U is 44◦.952 so that the maximum difference is φ −U ≈ 5′.7.

5.6 The curvature of the ellipsoid

We investigate the properties of the two dimensional curves formed by the intersection of
some, but not all, planes with the surface of the ellipsoid: we use the mathematical results
established in Appendix A. In particular we investigate two special families of planes. The
first family (S) has the normal at P as a common axis and the intersections of its planes with
the surface are called the normal sections at P. One member of the family is the meridian
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Figure 5.5

plane (black) containing P and the symmetry axis of the ellipsoid. Another important mem-
ber of the family is the plane at right angles to the meridian plane: it is called the prime
vertical plane (shaded grey). Other members of the family are labelled by the angle α

between a specific plane and the meridian plane.

The second family of planes (T) has as its axis the tangent to the parallel circle at P: we
are interested in just two of its planes. One (black) is the plane of the parallel: its section
on the surface is the parallel circle. The other is that which contains the normal at P: this is
the prime vertical plane (grey), the only plane common to both families.
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Radius of curvature in the meridian plane

The section by the meridian plane is an ellipse whose curvature may be determined from
either Cartesian equations or parameterised equations by the well known formulae sum-
marised in Appendix A. The easiest method is to use the parameterisation in terms of the
reduced latitude given in (5.36). This has been done as an example in Appendix A: equa-
tion (A.12) gives the meridian curvature as

κ =
1
a

√
1− e2

[1− e2 cos2U ]3/2 . (5.44)

It will be more useful to work with the meridian radius of curvature defined by ρ = 1/κ

and expressed as a function of φ . Using equation (5.41) we have

ρ(φ) =
a(1− e2)(

1− e2 sin2
φ
)3/2 (5.45)

Using (5.16) we have the following relation between ρ and ν :

ρ =
ν3

a2

(
1− e2) . (5.46)

Furthermore, we have
ρ

ν
=

1− e2

1− e2 sin2
φ
. (5.47)

Since (a) the denominator is less than or equal to 1 and (b) the numerator is less than or
equal to the denominator, we have

(1− e2)ν ≤ ρ ≤ ν . (5.48)

Now in Figure 5.2 we have CP = ν and EP =CP−CE = (1− e2)ν . Therefore the centre
of curvature of the meridian is at a point D between C and E, as shown in Figure 5.5.

Radius of curvature in the prime vertical plane

To find the radius of curvature in the prime vertical we consider two planes of the family T :
the prime vertical itself (grey) and the parallel plane (black). The radii of curvature in these
two planes are related by Meusnier’s theorem (Appendix A). This theorem relates the radius
of curvature in a normal section to that made by a plane at an oblique angle φ :

Rnormal = secφ Roblique (5.49)

We identify the prime vertical plane and parallel plane of the family T with the normal and
oblique planes of the theorem. Now the parallel plane intersects the surface in a parallel
circle so we know that its radius of curvature is simply NP = p(φ) in Figure 5.2. But this is
just ν(φ)cosφ and therefore

Rprime vertical = secφ Rparallel = secφ p(φ) = ν(φ). (5.50)
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Thus we have the important result that the distance CP = ν(φ) may be identified as the
radius of curvature of the normal section made by the prime vertical plane. The point C
where the normal meets the axis is the centre of curvature of this section.

Radius of curvature along a general azimuth

Returning to S, the family of planes on the normal, we now know the curvature of two
of the normal sections: ρ−1 on the meridian plane and ν−1 on the prime vertical. Now
consider the curvature, K(α), of the section made by that plane of the family at an angle α ,
measured clockwise from the meridian plane. Clearly the symmetry of the ellipsoid about
any meridian plane implies that K(−α) = K(α) so that K(α) is a symmetric function of α

and it must therefore have a turning point at α = 0. Therefore the curvature of the meridian
section must be either a minimum or maximum and it is therefore one of the principal
curvatures at P—see Appendix A.

In the appendix we proved that the planes containing the principal curvatures are or-
thogonal. Therefore the curvature of the normal section made by the prime vertical plane
must be the other principal curvature. Furthermore, equation (5.47) gives ρ ≤ ν and there-
fore ρ−1 ≥ ν−1 so that the curvature in the meridian section is the maximum normal sec-
tion curvature at any point. Introducing the radius of curvature on the general section by
R(α) = 1/K(α), we use Euler’s formula, equation (A.36), to deduce that

1
R(α)

=
1
ρ

cos2
α +

1
ν

sin2
α. (5.51)

Curvatures and their derivatives.

In addition to the principal curvatures, ρ and φ it is useful to introduce a special notation
for their quotient, β = ν/ρ:

ν(φ) =
a(

1− e2 sin2
φ
)1/2 , ρ(φ) =

ν3

a2

(
1− e2) , (5.52)

β (φ) =
ν

ρ
=

1− e2 sin2
φ

1− e2 . β −1 =
e2 cos2 φ

1− e2 . (5.53)

We shall frequently require the derivatives of the curvatures and their quotient. It is straight-
forward to show that

dν

dφ
= (β −1)ρ tanφ ,

dρ

dφ
= 3

(β −1)
β

ρ tanφ ,
dβ

dφ
=−2(β −1) tanφ .

(5.54)

We need both first and second derivative of ν in the combinations

1
ν

dν

dφ
=

(β −1) tanφ

β
,

1
ν

d2ν

dφ 2 =
(β −1)

β
+

1
β 2

(
2β

2−5β +3
)

tan2
φ . (5.55)
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Finally we note that the cross-section coordinates (5.17, 5.18) and their derivatives are

p(φ) = ν(φ) cosφ , Z(φ) = (1− e2)ν(φ) sinφ , (5.56)

d p
dφ

=−ρ sinφ ,
dZ
dφ

= ρ cosφ . (5.57)

Spherical limit

We shall refer to the limit e→ 0 as the spherical limit. Clearly in this limit

ν → a, ρ → a, β → 1, ν
′, ρ

′, β
′ → 0. (5.58)

5.7 Distances on the ellipsoid

Derivation of the metric

Starting from the parameterisation of the Cartesian coordinates (Section 5.4):

X(φ) = p(φ)cosλ = ν(φ)cosφ cosλ ,

Y (φ) = p(φ)sinλ = ν(φ)cosφ sinλ ,

Z(φ) = (1− e2)ν(φ)sinφ . (5.59)

we have

dX = ṗcosλ dφ − psinλ dλ , where DOT ≡ d
dφ

dY = ṗsinλ dφ + pcosλ dλ ,

dZ = Ż dφ . (5.60)

Themetric may be written as

ds2 = dX2 +dY 2 +dZ2,

=
(

ṗ2 + Ż2)dφ
2 + p2dλ

2.

Using (5.57) and (5.56) we obtain two useful forms:

ds2 = ρ
2 dφ

2 + p2dλ
2, (5.61)

ds2 = ρ
2 dφ

2 +ν
2 cos2

φ dλ
2. (5.62)

On the meridian we have dλ = 0 and on the parallel circle we have dφ = 0 Therefore

dsmeridian = ρ dφ , (5.63)

dsparallel = ν cosφ dλ . (5.64)
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Finite distances on parallel and meridian

Equations (5.63) and (5.64) may be integrated to give

sparallel =
∫

λ2

λ1

dsparallel =
∫

λ2

λ1

ν(φ)cosφ dλ = ν(φ)cosφ
(
λ2−λ1

)
, (5.65)

smeridian =
∫

φ2

φ1

dsmeridian =
∫

φ2

φ1

ρ(φ)dφ = a(1− e2)
∫

φ2

φ1

dφ(
1− e2 sin2

φ
)3/2 . (5.66)

The meridian integral is related to a special case of an incomplete elliptic integral of the
third kind. In the notation of the NIST handbook (Olver et al., 2010) at Section 19.2(ii)) it
is equal to Π(φ2,e2,e)−Π(φ1,e2,e). Since the evaluation of such elliptic integrals requires
series computation we prefer to evaluate the integral from first principles: see Section 5.8.

Geodesics

A geodesic on the ellipsoid is the shortest distance between two points.

The direct problem. Given a geodesic starting at P1(φ1,λ 1) with an azimuth α1 find the
coordinates of the point P2(φ2,λ 2) at a distance s measured along the geodesic; find also
the azimuth α2 of the geodesic at P2.

The inverse problem. Given the points P1(φ1,λ 1) and P2(φ2,λ 2) find s, the geodesic dis-
tance between them, and the azimuths α1, α2 at the end points.

These problems were first solved by Bessel (1825)) and implementations of his solu-
tion were given by Vincenty (1976) but without any background theory. More recently
Karney (2012) has published a full outline of the Bessel theory together with more accurate
algorithms. There is no space to describe those methods here.

The infinitesimal element on the ellipsoid

The infinitesimal element on the sphere was discussed in Section 2.1, Figure 2.5. From
equations (5.63) and (5.64) we see that the infinitesimal element on the ellipsoid is approx-
imated by a planar rectangular quadrilateral with sides of length ρ δφ on the meridians and
ν cosφ δλ on a parallel, (Figure 5.6).

α
φ

φ+δφ

ν���φ δλ

ρδφ

λ λ+δλ

�

�

�

�

�
�	



φλ

����

δ�

Figure 5.6

http://dlmf.nist.gov/19.2#ii Section 19.2(ii)
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5.8 The meridian distance on the ellipsoid

On the sphere the meridian distance was simply m(φ) = aφ . On the ellipsoid we use the
same notation but the definition follows from equation (5.66):

m(φ) =
∫

φ

0
dsmeridian =

∫
φ

0
ρ(φ)dφ = a(1− e2)

∫
φ

0

dφ(
1− e2 sin2

φ
)3/2 . (5.67)

Following Delambre (1799), expand the denominator by the binomial theorem, giving

m(φ) = a(1− e2)
∫

φ

0

(
1+b2e2s2 +b4e4s4 +b6e6s6 +b8e8s8 + · · ·

)
dφ , (5.68)

where we have set s = sinφ . Using (E.30) we find

b2 =
3
2
, b4 =

15
8
, b6 =

35
16
, b8 =

315
128

. (5.69)

Using the trigonometric identities (C.32) to (C.38) we can express sin2
φ , . . .sin8

φ in terms
of cos2φ , . . .cos8φ . Collecting terms with the same cosine factors and integrating gives a
series starting with a φ term followed by terms in sin2φ , . . .sin8φ . The result is:

m(φ) = A0φ +A2 sin2φ +A4 sin4φ +A6 sin6φ +A8 sin8φ + · · · , (5.70)

where the coefficients are given by

A0 = a(1−e2)

(
1+

b2e2

2
+

3b4e4

8
+

5b6e6

16
+

35b8e8

128

)
= a

(
1−e2

4
−3e4

64
− 5e6

256
− 175e8

16∗1024

)
A2 =

a(1−e2)

2

(
−b2e2

2
−b4e4

2
−15b6e6

32
−7b8e8

16

)
= a

(
−3e2

8
−3e4

32
− 45e6

1024
− 420e8

16∗1024

)
A4 =

a(1−e2)

4

(
b4e4

8
+

3b6e6

16
+

7b8e8

32

)
= a

(
15e4

256
+

45e6

1024
+

525e8

16∗1024

)
,

A6 =
a(1−e2)

6

(
−b6e6

32
−b8e8

16

)
= a

(
− 35e6

3072
− 175e8

12∗1024

)
,

A8 =
a(1−e2)

8

(
b8e8

128

)
= a

(
315e8

128∗1024

)
. (5.71)

If we use the numerical values for the WGS84 ellipsoid (5.4), then, in metres,

m(φ) = 6367449·146φ −16038·509sin2φ +16·833sin4φ −0·022sin6φ +0·00003sin8φ

(5.72)
The first four terms have been rounded to the nearest millimetre whilst the last term shows
that the O(e8) terms give rise to sub-millimetre corrections. We can usually drop O(e8)
terms in expressions for the meridian distance . Note that for the first term φ must be
expressed in radians.



Chapter 5. The geometry of the ellipsoid 99

Meridian distance II: expansion in flattening

There are other ways of obtaining a series expansion. For example, the OSGB (1999) trans-
verse Mercator formulae use an expansion in terms of the flattening parameter, n. Following
Bessel (1825) we use the relations between a, b, e, n given in Section 5.2 to write the merid-
ian distance as

m(φ) = b(1−n)(1+n)2
∫

φ

0

dφ(
1+2ncos2φ +n2)3/2 . (5.73)

The integral is then evaluated by a change of variable: set z = exp(2iφ) for which we have
dz = 2izdφ and z+ z−1 = 2cos2φ . The integrand becomes, to O(n3),(

1+2ncos2φ +n2
)−3/2

= (1+nz)−3/2 (1+nz−1)−3/2

=
(
1+a1nz+a2n2z2 +a3n3z3+

)(
1+a1nz−1 +a2n2z−2 +a3n3z−3)

= 1+a2
1n2+

(
a1n+a1a2n3)[z+

1
z

]
+a2n2

[
z2+

1
z2

]
+a3n3

[
z3+

1
z3

]
+O(n4)

where the coefficients are given by (E.30):

a1=−
3
2
, a2=

15
8
, a3=−

35
16
. (5.74)

Apart from the overall constant multiplier the integral becomes, to O(n3),∫ z

1

dz
2iz

(
1+a2

1n2 +
(
a1n+a1a2n3)[z+

1
z

]
+a2n2

[
z2+

1
z2

]
+a3n3

[
z3+

1
z3

])

=
1
2i

((
1+a2

1n2) lnz+
(
a1n+a1a2n3)[z− 1

z

]
+

a2n2

2

[
z2− 1

z2

]
+

a3n3

3

[
z3− 1

z3

])∣∣∣∣z
1

All terms vanish at the lower limit. At the upper limit we have lnz = ln
(

exp(2iφ)
)
= 2iφ

and z− z−1 = 2isin2φ etc. Therefore the final result is

m(φ) = B0φ +B2 sin2φ +B4 sin4φ +B6 sin6φ + · · · , (5.75)

where the coefficients are given to order n3 by

B0 = b(1−n)(1+n)2
(

1+
9
4

n2
)

= b
(

1+n+
5
4

n2 +
5
4

n3
)
,

B2 = b(1−n)(1+n)2
(
−3n

2
− 45n3

16

)
=−b

(
3
2

n+
3
2

n2 +
21
16

n3
)
,

B4 = b(1−n)(1+n)2
(

15n2

16

)
= b

(
15
16

n2 +
15
16

n3
)
,

B6 = b(1−n)(1+n)2
(
−35n3

48

)
=−b

(
35
48

n3
)
. (5.76)
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Meridian distance from a reference latitude

The results we have just obtained measure the meridian distance from the equator. In prac-
tice we often require ∆m, the distance from a reference latitude φ0. Using the second form
of the series we find

∆m = m(φ)−m(φ0)

= B0(φ−φ0)+B2(sin2φ−sin2φ0)+B4(sin4φ−sin4φ0)+B6(sin6φ−sin6φ0)

= B0(φ −φ0)+2B2 sin(φ −φ0)cos(φ +φ0)+2B4 sin2(φ−φ0)cos2(φ+φ0)

+2B6 sin3(φ−φ0)cos3(φ+φ0)+ · · · . (5.77)

with the coefficients given by (5.76). This is the expression used by the OSGB (1999).

Meridian distance III: Helmert’s formula

Helmert (1880) writes the meridian distance as:

m(φ) =
a

1+n
(h0 φ +h2 sin2φ +h4 sin4φ +h6 sin6φ +h8 sin8φ + · · ·) . (5.78)

Comparing this with the series 5.75 shows that hn = (1+n)Bn/a. If the series is extended to
include O(n4) terms (exercise for the reader, or use the maxima code in Appendix H.3) the
coefficients may be evaluated directly from (5.76). Use equation 5.6: (1+n)b/a = (1−n).

h0 = 1+
n2

4
+

n4

64
,

h2 =−
3n
2

+
3n3

16
,

h4 =
15n2

16
− 15n4

64
,

h6 =−
35n3

48
,

h8 =
315n4

512
. (5.79)

Note that these coefficients for m(φ) achieve the same accuracy with far less terms than the
previous expressions, (5.71) and (5.76).

The polar distance

The distance from equator to pole may be obtained from any of the above series. It is
defined by

mp = m(π/2) =
1
2

πA0 =
1
2

πB0 =
1
2

π
ah0

1+n
= 10,001,965·730 metres. (5.80)

where the numerical value is calculated for WGS84. The corresponding mean radius is
defined to be R = 2mp/π = 6367449.146m
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5.9 Inverse meridian distance

When we derived the inverse series for TMS in Chapter 3 we expressed the coefficients
in terms of the footpoint latitude φ1 which was defined by msph(φ1) = aφ1 = y for a given
point (x,y) on the projection. Trivially, φ1 = y/a. For the ellipsoid we must invert one of
the series (5.70), (5.75) or (5.78) . We outline three methods.

Inverse meridian distance I: fixed point iteration

To solve m(φ) = y when m(φ) is given by one of the above series we consider the iteration

φn+1 = g(φn) = φn−
(m(φn)− y)

a
, n = 0,1,2 . . . , (5.81)

where the initial value is that for the spherical approximation: namely φ0 = y/a. If the
iteration scheme converges, so that φn+1→ φ∗ and φn→ φ∗, then (5.81) becomes

φ
∗ = g(φ∗) = φ

∗− (m(φ∗)− y)
a

(5.82)

so that m(φ∗)− y = 0 and φ∗ is the required solution for the footpoint φ1. Note that since
g′(φ)≈ 1−B0/a = O(e2)� 1 the iteration will converge quickly.

Inverse meridian distance II: Newton Raphson

Solving m(φ) = y for a given y is equivalent to finding the zero of the function

q(φ)≡−y+m(φ). (5.83)

Taking the series 5.78 as an example we have

q(φ) =−y+
a

1+n
(h0 φ +h2 sin2φ +h4 sin4φ +h6 sin6φ + · · ·) (5.84)

q′(φ) =
a

1+n
(h0 +2h2 cos2φ +4h4 cos4φ +6h6 cos6φ + · · ·) . (5.85)

The initial value may be taken as that for the spherical approximation, namely φ0 = y/a.
The Newton-Raphson method then gives the required value of φ as the limit of the iteration:

φn+1 = φn−
q(φn)

q′(φn)
, n = 0,1,2 . . . . (5.86)

Inverse meridian distance III: via the rectifying latitude

The rectifying latitude, µ , is a scaled version of the meridian distance (5.71, 5.76, 5.79):

µ(φ) =
π

2
m(φ)

mp
=

m(φ)

A0
=

m(φ)

B0
=

(1+n)m(φ)

ah0
. (5.87)

A given m determines µ and hence φ follows from the series given in Section 5.12.
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5.10 Auxiliary latitudes double projections

Projections can be defined from the ellipsoid to any surface of ‘reasonable’ shape, not just
to the plane. Here we consider only the case of projections from the ellipsoid to a sphere of
radius R. Such a projection can then be followed by a suitable projection from the sphere to
the plane giving a double projection with specified properties.

Figure 5.7
If we denote the latitude and longitude coordinates on the sphere by (Φ,Λ) then the

projection to the sphere is defined by two (well-behaved) functions, Φ(φ ,λ ) and Λ(φ ,λ ),
where φ and λ are the usual geodetic longitude and latitude on the ellipsoid. For a dou-
ble projection we would define coordinates (x,y) on the plane by specifying two further
functions x(Φ,Λ) and y(Φ,Λ). Note that we have not yet specified the radius of the sphere.

We consider only restricted projections in which Λ = λ and Φ is a function of φ only.
This restricted set includes the main practical applications.

α α
φ

φ+δφ

δλ

δφ

λ λ+δλ

�

��

����

��
�

�

�

������

	
�φν

ρ

������� ������

δΛ	
�
�

Φ

δΦ

Λ Λ+δΛ

Φ Φ+δ

Φ

�
�

Figure 5.8

The basic properties of the projection from the ellipsoid to the sphere can be investigated
by comparing the infinitesimal elements shown in Figure 5.8. In particular the geometry of
the infinitesimal elements gives

(a) tanα =
ν cosφ δλ

ρ δφ
and (b) tanα

′ =
RcosΦδΛ

RδΦ
. (5.88)

so that
tanα

′ =
cosΦ

Φ′(φ)
ρ

ν cosφ
tanα. (5.89)

We shall also require the meridian scale factor:

h(φ) =
Rδ Φ

ρ δφ
=

RΦ′(φ)
ρ

. (5.90)
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Conserving angles: the conformal latitude

The function of Φ(φ) which generates a conformal restricted projection to the sphere is
called the conformal latitude, for which we use the notation χ(φ), (Snyder, 1987). There
are many other nomenclatures in the literature. Beware particularly that Adams (1921) uses
the same notation χ for the conformal latitude as defined here but he gives it the name
’isometric latitude’. In modern works isometric latitude refers to the term which we have
called the Mercator parameter in Chapters 2 and 6.

Equation (5.29) shows that the projection is conformal, that is α=α ′, if Φ = χ satisfies
the condition

sec χ χ ′(φ) =
ρ(φ)secφ

ν(φ)
. (5.91)

We defer the integration of this equation until the Section 5.11. Note that the conformality
condition imposes no constraint on the R, the radius of the sphere. All of the following
choices have been used: (1) the semi-major axis of the ellipsoid; (2) an arithmetic or geo-
metric mean of the semi-axes; (3) the meridian radius of curvature, ρ , at a latitude where
we seek the best fit; (4) the Gaussian radius of curvature,

√
ρν , at a latitude where we seek

the best fit; (5) radius of equal volume sphere; (6) radius of equal polar distance sphere
(Section 5.12); (7) radius of equal area sphere (Section 5.13). See also Section 2.1.

Conserving meridian length: the rectifying latitude

The function of Φ(φ) which preserves meridian length is called the rectifying latitude, for
which we use the notation µ(φ). In Figure 5.8 PK = PK′ so that

ρ dφ = Rdµ. (5.92)

This integrates immediately (see 5.67) to give

µ(φ) =
1
R

∫
φ

0
ρ(φ)dφ =

m(φ)

R
=

π

2
m(φ)

mp
(5.93)

where we have imposed µ(π/2) = π/2 and set m(π/2) = mp = πR/2. The projection must
be made to a sphere with this rectifying radius. Further details are in Section 5.12

Conserving area: the authalic latitude

The function of Φ(φ) which preserves area is called the authalic latitude (Greek for ‘same
area’), for which we use the notation ξ (φ). In Figure 5.8 gives

δAellipsoid = ν cosφ δλ ·ρ δφ = Rcosξ δΛ ·Rδξ = δAsphere, (5.94)

so that

cosξ
dξ

dφ
=

ρν cosφ

R2 , (5.95)

We defer the evaluation of this integral and its properties until Section 5.13 but we note here
that R must be chosen appropriately if the total areas of ellipsoid and sphere are the same.
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5.11 The conformal latitude

The defining equation, (5.91), integrates to

∫ χ(φ)

0
sec χ dχ =

∫
φ

0

ρ(φ)secφ

ν(φ)
dφ . (5.96)

The integral on the left is the same as that for the Mercator parameter on the sphere, equa-
tion (2.26), so that

LHS = ln
[

tan
(

χ(φ)

2
+

π

4

)]
= tanh−1 sin χ = gd−1 χ. (5.97)

For the integral on the right we substitute for the functions ν and ρ from equations (5.16):

RHS =
∫

φ

0

(1− e2)

cosφ

1
1− e2 sin2

φ
dφ . (5.98)

Splitting the integrand into partial fractions and noting that the first term gives the same
integral as (2.26), we

RHS =
∫

φ

0

[
1

cosφ
− e2 cosφ

2

(
1

1+ esinφ
+

1
1− esinφ

)]
dφ

= ln
[

tan
(

φ

2
+

π

4

)]
− e

2

[
ln
(

1+ esinφ

1− esinφ

)]
(5.99)

= tanh−1 sinφ − e tanh−1[esinφ ] (5.100)

= gd−1
φ − e tanh−1[esinφ ] (5.101)

Therefore

χ(φ) = 2arctan

[
tan
(

φ

2
+

π

4

)(
1− esinφ

1+ esinφ

)e/2
]
− π

2
(5.102)

= sin−1 [tanh
(
tanh−1 sinφ − e tanh−1[esinφ ]

)]
(5.103)

= gd
(
gd−1

φ − e tanh−1[esinφ ]
)
. (5.104)

This rather complicated transformation (along with Λ = λ ) has been constructed to guar-
antee a conformal projection from ellipsoid to sphere. Note that equations (5.90), (5.91)
and (5.102) show that the scale cannot be uniform on any meridian of the conformal sphere.
Therefore following this projection with TMS from sphere to plane will produce a con-
formal projection of the ellipsoid to the plane but with a non-uniform scale on the central
meridian. Such a double projection is not TME where we demand that the scale be constant
on the central meridian.
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Series for the conformal latitude

Equation (5.102) shows that χ and φ are equal at the equator and at the pole and elsewhere
they differ by terms of order O(e2). They are related by Fourier series in sin2kφ :

χ(φ) = φ +b2 sin2φ +b4 sin4φ +b6 sin6φ +b8 sin8φ + · · · , (5.105)

φ(χ) = χ +d2 sin2χ +d4 sin4χ +d6 sin6χ +d8 sin8χ + · · · . (5.106)

Low order analytic derivations may be found on line in Adams (1921). Note that he uses
’isometric latitude’ instead of ’conformal latitude’ (although he does use the same notation).
He gives six methods for the first series and seven for the second (pages 16–59). A more
modern notation is used by Deakin (2010) (paper 6). Maxima code can also be found in
Section H.4: this can generate as many terms as required. The results are as follows:

Conformal latitude from geodetic latitude

χ(φ) = φ +b2 sin2φ +b4 sin4φ +b6 sin6φ +b8 sin8φ + · · · (5.107)

b2 =−
e2

2
− 5e4

24
− 3e6

32
− 281e8

5760
=−2n+

2n2

3
+

4n3

3
− 82n4

45
,

b4 =
5e4

48
+

7e6

80
+

697e8

11520
=

5n2

3
− 16n3

15
− 13n4

9
,

b6 =−
13e6

480
− 461e8

13440
=−26n3

15
+

34n4

21
,

b8 =
1237e8

161280
=

1237n4

630
. (5.108)

Geodetic latitude from conformal latitude

φ(χ) = χ +d2 sin2χ +d4 sin4χ +d6 sin6χ +d8 sin8χ + · · · (5.109)

d2 =
e2

2
+

5e4

24
+

e6

12
+

13e8

360
= 2n− 2n2

3
−2n3 +

116n4

45
,

d4 =
7e4

48
+

29e6

240
+

811e8

11520
=

7n2

3
− 8n3

5
− 227n4

45
,

d6 =
7e6

120
+

81e8

1120
=

56n3

15
− 136n4

35
,

d8 =
4279e8

161280
=

4279n4

630
. (5.110)
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5.12 The rectifying latitude

The rectifying latitude was defined in equation 5.87 as a projection from the ellipsoid to a
sphere of specific radius, namely R = 2mp/π .

µ(φ) =
π

2
m(φ)

mp
=

m(φ)

A0
=

m(φ)

B0
=

(1+n)m(φ)

ah0
(5.111)

using the series (5.70), (5.75) or (5.78).

µ(φ) = φ +b2 sin2φ +b4 sin4φ +b6 sin6φ +b8 sin8φ + · · · (5.112)

where the coefficients bn = An/A0 = Bn/B0 = hn/h0 are given in (5.71), (5.76) or (5.79).
(See also Adams (1921), pages 123-128: he uses ω for the rectifying latitude.The series
were confirmed by the Maxima code given in Section H.3. The results for the direct and
inverse series are

Rectifying latitude from geodetic latitude

µ(φ) = φ +b2 sin2φ +b4 sin4φ +b6 sin6φ +b8 sin8φ + · · · (5.113)

b2 =−
3e2

8
− 3e4

16
− 111e6

1024
− 141e8

2048
=−3n

2
+

9n3

16
,

b4 =
15e4

256
+

15e6

256
+

405e8

8192
=

15n2

16
− 15n4

32
,

b6 =−
35e6

3072
− 35e8

2048
=−35n3

48
,

b8 =
315e8

131072
=

315n4

512
. (5.114)

Geodetic latitude from rectifying latitude

φ(µ) = µ +d2 sin2µ +d4 sin4µ +d6 sin6µ +d8 sin8µ + · · · (5.115)

d2 =
3e2

8
+

3e4

16
+

213e6

2048
+

255e8

4096
=

3n
2
− 27n3

32
,

d4 =
21e4

256
+

21e6

256
+

533e8

8192
=

21n2

16
− 55n4

32
,

d6 =
151e6

6144
+

151e8

4096
=

151n3

96
,

d8 =
1097e8

131072
=

1097n4

512
. (5.116)
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5.13 The authalic latitude

The definition of the authalic latitude was given in equation 5.95:

R2 cosξ
dξ

dφ
= ρν cosφ , (5.117)

Substituting for the functions ν and ρ from equations (5.16), (5.45) and integrating∫
ξ

0
cosξ dξ =

∫
φ

0

ρν cosφ

R2 dφ , (5.118)

sinξ =
a2(1− e2)

R2

∫
φ

0

cosφ dφ

(1− e2 sin2
φ)2

(5.119)

≡ a2

2R2 q(φ). (5.120)

If we demand that ξ = π/2 when φ = π/2 we must fix R = a
√

qp/2 where qp = q(π/2):
this defines the authalic radius.

The integral for q(φ) may be evaluated by the substitution esinφ = tanhα:

q(φ) = 2(1− e2)
∫

φ

0

cosφ dφ

(1− e2 sin2
φ)2

= 2e−1(1− e2)
∫

α

0
cosh2

α dα

= e−1(1− e2)
∫

α

0
(cosh2α +1)dα

= e−1(1− e2)(sinhα cosα +α)

= e−1(1− e2)

(
esinφ

1− e2 sinφ
+ tanh−1[esinφ ]

)
(5.121)

The final result for the authalic latitude is therefore

ξ (φ) = sin−1
(

q(φ)
qp

)
, (5.122)

q(φ) =
(1− e2)sinφ

1− e2 sin2
φ

+
1− e2

e
tanh−1(esinφ), (5.123)

qp = q(π/2) = 1+
1− e2

e
tanh−1 e. (5.124)

Area of an oblate ellipse

By construction, the oblate ellipsoid and the authalic sphere have the same area. Therefore

Aellipsoid = 4πR2 = 2πa2qp = 2πa2
(

1+
1− e2

e
tanh−1 e

)
. (5.125)

NB: the result for the prolate ellipsoid is quite different. See mathworld.

http://mathworld.wolfram.com/ProlateSpheroid.html
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Series for the authalic latitude

Once again, low order analytic derivations of the series may be found on line in Adams
(1921), pages 60–83: he uses β for the authalic latitude. Maxima code is given in Sec-
tion H.5: this can generate as many terms as required. The results are as follows:

Authalic latitude from geodetic latitude

ξ = φ +b2 sin2φ +b4 sin4φ +b6 sin6φ +b8 sin8φ + · · · (5.126)

b2 =−
e2

3
− 31e4

180
− 59e6

560
− 42811e8

604800
=−4n

3
− 4n2

45
+

88n3

315
+

538n4

4725
,

b4 =
17e4

360
+

61e6

1260
+

76969e8

1814400
=

34n2

45
+

8n3

105
− 2482n4

14175
,

b6 =−
383e6

45360
− 3347e8

259200
=−1532n3

2835
− 898n4

14175
,

b8 =
6007e8

3628800
=

6007n4

14175
. (5.127)

Geodetic latitude from authalic latitude

φ = ξ +d2 sin2ξ +d4 sin4ξ +d6 sin6ξ +d8 sin8ξ + · · · (5.128)

d2 =
e2

3
+

31e4

180
+

517e6

5040
+

120389e8

1814400
=

4n
3

+
4n2

45
− 16n3

35
− 2582n4

14175
,

d4 =
23e4

360
+

251e6

3780
+

102287e8

1814400
=

46n2

45
+

152n3

945
− 11966n4

14175
,

d6 =
761e6

45360
+

47561e8

1814400
=

3044n3

2835
+

3802n4

14175
,

d8 =
6059e8

1209600
=

6059n4

4725
. (5.129)

Authalic radius

Rq = a
(

1− e2

6
− 17e4

360
− 67e6

3024
− 23123e8

1814400

)
(5.130)

= a
(

1− 2n
3
+

26n2

45
− 374n3

945
+

722n4

2025

)
. (5.131)
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5.14 Ellipsoid: summary

Equation: ellipsoid and cross-section

X2

a2 +
Y 2

a2 +
Z2

b2 = 1,
p2

a2 +
Z2

b2 = 1. (5.132)

Parameters

b2 = a2(1− e2), f =
a−b

a
, e2 = 2 f − f 2, (5.133)

e′2 =
a2−b2

b2 =
e2

1− e2 , e1 = n =
a−b
a+b

. (5.134)

WGS84 ellipsoid

a = 6378137.0m, e = 0.0818191908, f = 0.003352810,

b = 6356752.314m, e2 = 0.0066943799,
1
f
= 299.3249753. (5.135)

Cartesian coordinates

X(φ) = p(φ)cosλ = ν(φ) cosφ cosλ ,

Y (φ) = p(φ)sinλ = ν(φ) cosφ sinλ ,

Z(φ) = (1− e2)ν(φ) sinφ . (5.136)

Coordinate derivatives

d p
dφ

=−ρ sinφ ,
dZ
dφ

= ρ cosφ . (5.137)

Radii of curvature and their ratio

ν(φ) =
a

[1− e2 sin2
φ ]1/2 , ρ(φ) =

ν3

a2

(
1− e2) , β (φ) =

ν

ρ
=

1− e2 sin2
φ

1− e2 .

(5.138)

Curvature derivatives

dν

dφ
= (β −1)ρ tanφ ,

dρ

dφ
= 3

(β −1)
β

ρ tanφ ,
dβ

dφ
=−2(β −1) tanφ . (5.139)

Metric
ds2 = ρ

2 dφ
2 +ν

2 cos2
φ dλ

2. (5.140)

/continued
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Meridian distance

m(φ) = A0φ +A2 sin2φ +A4 sin4φ +A6 sin6φ + · · · , (5.141)

= B0φ +B2 sin2φ +B4 sin4φ +B6 sin6φ + · · · (5.142)

=
a

1+n
(h0 φ +h2 sin2φ +h4 sin4φ +h6 sin6φ + · · ·) . (5.143)

Rectifying latitude

µ(φ) =
π

2
m(φ)

mp
, (5.144)

= φ +b2 sin2φ +b4 sin4φ +b6 sin6φ + · · · , (5.145)

φ(µ) = µ +d2 sin2µ +d4 sin4µ +d6 sin6µ + · · · . (5.146)

where An, Bn, hn, bn and dn are given by (5.71), (5.76), (5.79), (5.114) and (5.116).

Conformal latitude

χ(φ) = φ +b2 sin2φ +b4 sin4φ +b6 sin6φ +b8 sin8φ + · · · , (5.147)

φ(χ) = χ +d2 sin2χ +d4 sin4χ +d6 sin6χ +d8 sin8χ + · · · , (5.148)

where bn and dn are given by (5.108) and (5.110).

Authalic latitude

ξ = φ +b2 sin2φ +b4 sin4φ +b6 sin6φ +b8 sin8φ + · · · (5.149)

φ = ξ +d2 sin2ξ +d4 sin4ξ +d6 sin6ξ +d8 sin8ξ + · · · (5.150)

where bn and dn are given by (5.127) and (5.129).
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Chapter6
Normal Mercator on the ellipsoid (NME)

Abstract

Derivation by analogy with NMS. Alternative forms of the projection. The
inverse projection using (a) numerical methods, (b) Taylor series expansions,
(c) the inverse series for the conformal latitude Scale factor in geographical
coordinates and projection coordinates.

6.1 Introduction

The normal Mercator projection on the ellipsoid (NME) is a straightforward, but non-trivial,
generalisation of the normal projection on the sphere (NMS in Chapter 2) and shares the
same advantages and disadvantages. It is constructed to be conformal, preserving angles
exactly and mapping rhumb lines on the ellipsoid map into lines of constant bearing on the
map. The conformality guarantees that the scale at any point is isotropic (independent of
direction) so that the projection is locally orthomorphic, preserving small shapes approx-
imately. As in NMS, the scale does vary with latitude, being exact on the equator and
reasonably accurate only within a fairly narrow band centred on the equator. The extent of
this region of high accuracy may be increased by using a secant form of the projection. The
projection stretches to infinity and it is greatly distorted at high latitudes. The projection
does not preserve area.

We shall find that the quantitative differences between NMS and NME are of order e2,
about 0.007, and thus less than 1%.

The projection equations are written in terms of a modified Mercator parameter ψ (usu-
ally called the isometric latitude in the literature):

x(λ ,φ) = aλ , y(λ ,φ) = aψ(φ). (6.1)

Warning. We use the same notation for the Mercator parameter on both the sphere
and the ellipsoid although they are of course different functions. From this point
ψ will always denote the ellipsoidal form which is derived overleaf.
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6.2 The direct transformation for NME

The modified Mercator parameter is derived by comparing the infinitesimal element on the
ellipsoid (Figure 5.6 and above) and the projection plane and imposing the conformality
condition. The geometry of the infinitesimal elements gives

(a) tanα =
ν cosφ δλ

ρ δφ
, and (b) tanβ =

δx
δy

=
aδλ

aψ ′(φ)δφ
, (6.2)

so that
tanβ =

ρ secφ

νψ ′(φ)
tanα. (6.3)

The projection is conformal if α = β . Therefore

dψ

dφ
=

ρ(φ)secφ

ν(φ)
. (6.4)

The functions ν and ρ are given in equations (5.16) and (5.45) as

ν(φ) =
a

[1− e2 sin2
φ ]1/2

, ρ(φ) =
a(1− e2)(

1− e2 sin2
φ
)3/2 (6.5)

and therefore

ψ(φ) =
∫

φ

0

(1− e2)

cosφ

1
1− e2 sin2

φ
dφ . (6.6)

This integral differs from that for the spherical case by terms of order O(e2). It was also
evaluated in the course of deriving the expression for the conformal latitude and it is directly
related to that latitude. From equations 5.98–5.104 we have

ψ(φ) = ln

[
tan
(

φ

2
+

π

4

)(
1− esinφ

1+ esinφ

)e/2
]

= ln
[

tan
(

χ(φ)

2
+

π

4

)]
(6.7)

= tanh−1 sinφ − e tanh−1(esinφ) = tanh−1 sin χ(φ) (6.8)

= gd−1
φ − e tanh−1(esinφ) = gd−1

χ(φ). (6.9)

Equation 6.7 clearly shows that this direct projection for NME may be considered as a
double projection (Section 5.10) from the ellipsoid to the conformal sphere, φ → χ(φ), and
then applying the spherical Mercator projection, equation 2.28, to the conformal sphere.
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6.3 The inverse transformation for NME

Inverting the equations x = aλ and y = aψ to find λ and ψ is trivial but finding a value
of φ from ψ = y/a is anything but trivial. There is no way in which we can invert equa-
tions 6.7–6.9 for ψ(φ) to give φ(ψ) in a closed form. Attempting to find a series for ψ(φ)
and inverting by the Lagrange reversion method, as we did for the auxiliary latitudes in
Sections 5.11–5.13, is doomed to failure because ψ becomes infinite and is close to φ only
near the equator. We outline three methods of proceeding.

Via the conformal latitude

The simplest method of inverting ψ(φ) is to first calculate the conformal latitude χ which
corresponds to a given value of ψ by using any of the three equations 6.7–6.9 and then
calculating φ(χ) by using the series 5.109.

Fixed point iteration

Any of the equations 6.7–6.9 may be rewritten in a way which permits a solution by fixed
point iteration. For example, corresponding to equation 6.9, we construct the following
iteration scheme for a given value of ψ = y/a.

φn+1 = gd
[
ψ + e tanh−1(esinφn)

]
, n = 0, 1, 2, . . . , (6.10)

with initial value taken as the spherical approximation φ0 = gd(y/a), equation 2.35.

Taylor series expansions

Although there are no series analogous to those derived for the auxiliary latitudes in Sec-
tions 5.11–5.13 we must develop a series which will be used in the next chapter on TME
(transverse Mercator on the ellipsoid). Suppose we a given a specific latitude value φ1
(which will be the footpoint latitude) and the corresponding Mercator parameter ψ1 calcu-
lated from any of equations 6.7–6.9. The values of φ corresponding to nearby points can
then be deduced from the Taylor series of the function φ(ψ) about ψ1. To fourth order the
series is:

φ(ψ) = φ1 +(ψ−ψ1)
dφ

dψ

∣∣∣∣
1
+

(ψ−ψ1)
2

2!
d2φ

dψ2

∣∣∣∣
1
+

(ψ−ψ1)
3

3!
d3φ

dψ3

∣∣∣∣
1
+

(ψ−ψ1)
4

4!
d4φ

dψ4

∣∣∣∣
1
,

(6.11)

We do not know the function φ(ψ) explicitly but we do know its first derivative as a function
of φ . Equation (6.4) gives

dφ

dψ
=

ν(φ)cosφ

ρ(φ)
= β (φ)cosφ . (6.12)
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We now construct expressions for all the derivatives in the Taylor series as functions
of φ . Using β ′ = (2−2β )t from equation (5.54) and setting s = sinφ etc. ,

dφ

dψ
= βc,

d2φ

dψ2 =
d

dψ
[βc] =

d
dφ

[βc]
dφ

dψ
=
[
β
′c−β s

]
(βc)

= [(2−2β )tc−β s] (βc) = c2t
[
−3β

2 +2β
]
,

d3φ

dψ3 =
d

dφ

{
c2t
[
−3β

2 +2β
]} dφ

dψ

= (βc)
{(
−2cst + c2(1+ t2)

)[
−3β

2 +2β
]
+ c2t [−6β +2] (2−2β )t

}
= c3 [

β
3(−3+15t2)+β

2(2−18t2)+β (4t2)
]
,

d4φ

dψ4 =
d

dφ

{
c3 [

β
3(−3+15t2)+β

2(2−18t2)+β (4t2)
]} dφ

dψ

= c4t
[
β

4(57−105t2)+β
3(−68+180t2)+β

2(16−84t2)+β (8t2)
]

(6.13)

These derivatives must be evaluated at φ1 and substituted into the Taylor series which we
now write as

φ−φ1 = (ψ−ψ1) β1c1 +
(ψ−ψ1)

2

2!
β1c2

1t1D2 +
(ψ−ψ1)

3

3!
β1c3

1D3 +
(ψ−ψ1)

4

4!
β1c4

1t1D4,

(6.14)

where β1 = ν(φ1)/ρ(φ1), c1 = cosφ1, t1 = tanφ1 and

D2 =−3β1 +2

D3 = β
2
1 (−3+15t2

1)+β1(2−18t2
1)+4t2

1

D4 = β
3
1 (57−105t2

1)+β
2
1 (−68+180t2

1)+β1(16−84t2
1)+8t2

1 . (6.15)

We shall also need these coefficients in the spherical limit (e→ 0, β → 1):

D2 =−1

D3 =−1+ t2
1

D4 = 5− t2
1 . (6.16)
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6.4 The scale factor

The scale factor for NME follows immediately from Figure 6.1. Having imposed confor-
mality the angles α and β are equal and the triangles PQM and P′Q′M′ are similar so that
the scale factor, defined as P′Q′/PQ, is equal to the ratio P′M′/PM. Since δx = aδλ we
see that the scale factor is

k(φ) =
asecφ

ν(φ)
. (6.17)

This scale factor is isotropic: it is independent of the angle α and depends only on
latitude. It differs from the isotropic scale factor for TMS, secφ , by a factor of a/ν which
gives rise to differences of order e2 which are less than 1%.

There is no simple expression for the scale factor expressed in terms of the projec-
tion coordinate y, or equivalently ψ = y/a. The best we can do is to find the value of φ

corresponding to given a ψ1 = y/a by the methods of the previous section and then use
equation 6.17. We can then use a Taylor series to evaluate further values of k corresponding
to values of ψ close to ψ1.

Consider the Taylor expansion

k(ψ) = k(ψ1)+(ψ−ψ1)
dk(ψ)

dψ

∣∣∣∣
1
+

(ψ−ψ1)
2

2!
d2k(ψ)

dψ2

∣∣∣∣
1
+

(ψ−ψ1)
3

3!
d3k(ψ)

dψ3

∣∣∣∣
1
+ · · · .

(6.18)

In the next Chapter we shall need this series where ψ1 will be identified as the footpoint
parameter defined as in Figure 4.2 and equation 4.14 generalised to the ellipsoid. See next
chapter. The third order terms will prove adequate.

Once again, we shall construct the derivatives in the coefficients as functions of φ eval-
uated at the particular value φ1 corresponding to ψ1. Using the value of dφ/dψ given
equation 6.4 we find (with the usual abbreviations for sinφ etc. and also setting β=ν/ρ

with derivatives 5.54)

dk(ψ)

dψ
=

dk(φ)
dφ

dφ

dψ
=

d
dφ

(
asecφ

ν(φ)

)
ν(φ)

ρ secφ
= (−1)

ν ′c−νs
ν2c2 βc =

t
ν
,

d2k(ψ)

dψ2 =
d

dφ

( t
ν

) dφ

dψ
=

c
ν
(β + t2),

d3k(ψ)

dψ3 =
c2t
ν

(
5β −4β

2 + t2) . (6.19)

k(ψ) =
a

ν1c1

[
1+E1(ψ−ψ1)+E2(ψ−ψ1)

2 +E3(ψ−ψ1)
3 + · · ·

]
, (6.20)

E1 = s1 E1 = s1,

E2 = c2
1(β1 + t2

1) E2 = c2
1(1+ t2

1),

E3 = c3
1t1(5β1−4β

2
1 + t2

1) E3 = c3
1t1(1+ t2

1). (6.21)
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6.5 Rhumb lines

Since the NME projection is a conformal cylindrical projection, rhumb lines making a con-
stant angle with the ellipsoid meridians are transformed into straight lines. The treatment
of rhumb lines on the sphere given in Section 2.5 carries through to the ellipsoid and NME
with very little modifiction. Basically Figure 2.15 is replaced by Figure 6.1 and the merid-
ian distance, Rφ on the sphere, becomes m(φ) on the ellipsoid. The distances along rhumb
lines become

r12 = ν(φ)cosφ (λ2−λ1), parallel, (6.22)

r12 = m(φ2)−m(φ1), meridian, (6.23)

r12 = secα
(
m(φ2)−m(φ1

)
, loxodrome. (6.24)

The equation of the loxodrome through the point (φ1,λ1) at an azimuth α is given by taking
the the straight line

y− y1 = (x− x1) cotα . (6.25)

and setting y = aψ(φ) and x = aλ with ψ defined by any of equations 6.7–6.9. Therefore

ψ(φ) = ψ(φ1)+(λ −λ1)cotα , (6.26)

λ (φ) = λ1 + tanα

[
tanh−1 sinφ − e tanh−1(esinφ)

]φ

φ1
. (6.27)

There is no equation corresponding to equation 2.43 because ψ(φ) cannot be inverted in
closed form.

6.6 Modified NME

NME can be modified exactly as NMS (in Section 2.7) to provide a slightly wider domain
near the equator in which the scale is accurate to within a given tolerance. For a tolerance
of 1 in 2500 the range of latitude will differ from that for NMS by terms of order e2, a cange
of less than 1%. We simply introduce a factor of k0 into the transformations.

x = k0aλ , y = k0aψ(φ), (6.28)

λ =
x

k0a
, φ = φ(ψ) with ψ = y/k0a. (6.29)

where

ψ(φ) = ln

[
tan
(

φ

2
+

π

4

)(
1− esinφ

1+ esinφ

)e/2
]

= ln
[

tan
(

χ(φ)

2
+

π

4

)]
(6.30)

= tanh−1 sinφ − e tanh−1(esinφ) = tanh−1 sin χ(φ) (6.31)

= gd−1
φ − e tanh−1(esinφ) = gd−1

χ(φ). (6.32)

and φ(ψ) is calculated by the methods of Section 6.3.
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Chapter7
Transverse Mercator on the ellipsoid (TME)

The longitude (λ ) series
Abstract

TME is derived as a series by a complex transformation from the NME projec-
tion. The method parallels that used in Chapter 4 for the derivation of the TMS
series from NMS.
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Figure 7.1

7.1 Introduction

In Chapter 6 we derived the NME projection: it can be considered as a conformal transfor-
mation from a point P(φ ,λ ) on the ellipsoid to a point on the complex ζ -plane defined by
ζ = λ + iψ where ψ(φ) is the Mercator parameter for the ellipsoid given in (6.7–6.9).

Let (x,y) be the coordinates of the required TME projection and let z = x+ iy be a
general point on the associated complex plane. This chapter presents truncated power series
in λ for a conformal transformation

ζ → z(ζ )≡ x(λ ,ψ)+ iy(λ ,ψ), (7.1)

such that (a) the central meridians, λ = 0 and x = 0, map into each other, and (b) the scale
is true on the x = 0. The method parallels that of Chapter 4 with the amended definitions
of the Mercator parameter and meridian distance for the ellipsoid. These series, originally
investigated by Gauss (c1822), were published by Krüger (1912); they were rebublished in
English by Lee (1945) and extended by Redfearn (1948) and Thomas (1952)
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The meridian distance

The meridian distance on the ellipsoid was obtained as a (various) series in Section 5.8: the
most useful for practical work is the Helmert form of equation (5.78):

m(φ) =
a

1+n
(h0φ +h2 sin2φ +h4 sin4φ +h6 sin6φ +h8 sin8φ + · · · , (7.2)

where the h-coefficients are given in equations (5.79). In considering the transformation
from the complex ζ -plane to the complex z-plane it is useful to express the meridian distance
as a function of ψ and write it as M(ψ), where

M
(
ψ(φ)

)
= m(φ). (7.3)

There is no closed expression for M(ψ) analogous to (4.6); this is of no import since we
only need its derivatives. (See next page).

Footpoint latitude and parameter

Given a point P′′ with projection coordinates (x,y) then the projection coordinates of the
footpoint are (0,y). The definition of the footpoint latitude φ1 and the footpoint parame-
ter ψ1 are unchanged from those of Sections 3.3 and 4.1: they are the solutions of

m(φ1) = y, M(ψ1) = y. (7.4)

We shall need to calculate the footpoint latitude (but not the footpoint parameter) for a
given y. One method of finding the solution of m(φ)=y is to use the fixed point iteration
given in equation (5.81),

φn+1 = g(φn) = φn−
(m
(
φn)− y

)
a

, n = 0,1,2 . . . , (7.5)

starting with the spherical approximation φ0 = y/a.

Alternatively, use the series (5.115) with µ = (1+n)m(φ)/h0 = (1+n)y/ah0, (5.111) ,

φ = µ +d2 sin2µ +d4 sin4µ +d6 sin6µ + · · · , µ =
y

B0
, (7.6)

where the d-coefficients are given in (5.116).

The Mercator parameter: derivative and inverse

The Mercator parameter on the ellipsoid is given in equations (6.7)–(6.9) as, for example,

ψ(φ) = ln

[
tan
(

φ

2
+

π

4

)(
1− esinφ

1+ esinφ

)e/2
]
. (7.7)

We do not need this explicit form, only its derivatives. From (6.4)

dψ

dφ
=

ρ(φ)

ν(φ)cosφ
,

dφ

dψ
=

ν(φ)cosφ

ρ(φ)
. (7.8)
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We shall also need φ(ψ), the inverse of the Mercator parameter, as a fourth order Taylor
series about the footpoint parameter ψ1. This is given in equation (6.14).

φ−φ1 = (ψ−ψ1) β1c1 +
(ψ−ψ1)

2

2!
β1c2

1t1D2 +
(ψ−ψ1)

3

3!
β1c3

1D3 +
(ψ−ψ1)

4

4!
β1c4

1t1D4

(7.9)

where the D-coefficients are given in (6.15) and (6.16). The ’1’ suffix denotes a term calcu-
lated at the footpoint latitude.

The derivatives of the meridian distance

We shall need the derivative of the M(ψ) as functions of φ . From (5.67) we have

dm(φ)

dφ
= ρ(φ), (7.10)

and using (7.8) we obtain

M′(ψ)≡ dM(ψ)

dψ
=

dM(ψ(φ))

dφ

dφ

dψ
=

dm(φ)

dφ

ν cosφ

ρ
= ν(φ)cosφ . (7.11)

Proceeding in this way we can construct all the derivatives of M(ψ) with respect to ψ but
with the results expressed as functions of φ . Denoting the n-th derivative of M with respect
to ψ by M(n) the exact results for the first six derivatives are given below. We use the usual
compact notation for sinφ etc. and also make frequent use of the derivatives of ν(φ) and
β (φ) given in equation (5.54):

dν

dφ
= (β −1)ρ tanφ ,

dβ

dφ
=−2(β −1) tanφ . (7.12)

M(1) =
dM
dψ

= νc. (7.13)

M(2) =
d2M
dψ2 =

d
dφ

(
M(1)

) dφ

dψ
=

d
dφ

(νc)
dφ

dψ
= [(β −1)ρtc−νs]

νc
ρ

=−νsc. (7.14)

M(3) =
d3M
dψ3 =−

[
(β −1)ρtsc+ν(c2− s2)

] νc
ρ

=−νc3 (
β − t2) (7.15)

≡−νc3W3.

/cont.
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M(4) =
d4M
dψ4 =−

[{
(β−1)ρtc3−3νc2s

}
(β−t2)+νc3{−2(β−1)t−2t(1+t2)

}] νc
ρ

= νsc3 [4β
2 +β − t2] (7.16)

≡ νsc3W4.

M(5) =
d5M
dψ5 =

[{
(β −1)ρtsc3 +ν(c4−3s2c2)

}
(4β

2 +β − t2)

+νsc3{(8β +1)(−2β +2)t−2t(1+ t2)
}] νc

ρ

= νc5 [4β
3(1−6t2)+β

2(1+8t2)−2β t2 + t4] (7.17)

≡ νc5W5.

M(6) =
d6M
dψ6 =

[{
(β −1)ρtc5 +ν(−5sc4)

}
W5 +νc5W ′5

]
νc
ρ

= νsc5
[
(−4β −1)

{
4β

3(1−6t2)+β
2(1+8t2)−2β t2 + t4}

+β t−1{(12β
2(1−6t2)+2β (1+8t2)−2t2)(−2β +2) t

−
(
24β

3−8β
2 +2β

)(
2t(1+ t2)

)
+4t3(1+ t2)

}]
=−νsc5 [8β

4(11−24t2)−28β
3(1−6t2)+β

2(1−32t2)−2β t2 + t4]
≡−νsc5W6 (7.18)

We shall find that the derivatives M(7) and M(8) multiply λ 7 and λ 8 terms respectively and
we shall later justify the neglect of terms of order e2λ 7 and e2λ 8. (The full terms of this
order are in Thomas (1952), pages 95,96.) Accordingly, we evaluate these derivatives in the
spherical limit in which e→ 0 and β → 1, (except that the overall multiplicative factors of
ν are not set equal to a for the sake of visual conformity with the lower order derivatives,
not to improve accuracy). Noting that ν ′ = β ′ = 0 in this limit we find

M(7) =
d7M
dψ7 =−

[
ν
(
c6−5s2c4)W6|β=1 +νsc5 W ′6

∣∣
β=1

]
νc
ρ

=−νc7 [(1−5t2)(61−58t2 + t4)+ t
(
−116t +4t3)(1+ t2)

]
=−νc7 (61−479t2 +179t4− t6) .
≡−νc7W7. (7.19)

M(8) =
d8M
dψ8 =

[
7νc6sW7−νc7W7

′] νc
ρ

= νsc7
[

7
(
61−479t2+179t4−t6)−1

t

(
−958t+716t3−6t5)(1+t2)

]
= νsc7 (1385−3111t2 +543t4− t6) .
≡ νsc7W8. (7.20)

Note the minus signs introduced in the definitions of W3, W6 and W7.
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Summary of derivatives

M(1) = νc W1 = 1

M(2) =−νsc W2 = 1

M(3) =−νc3 W3 W3(φ) = β − t2

M(4) = νsc3W4 W4(φ) = 4β
2 +β − t2

M(5) = νc5 W5 W5(φ) = 4β
3(1−6t2)+β

2(1+8t2)−2β t2 + t4

M(6) =−νsc5W6 W6(φ) = 8β
4(11−24t2)−28β

3(1−6t2)+β
2(1−32t2)−2β t2 + t4

M(7) =−νc7 W7 W7(φ) = 61−479t2 +179t4− t6 +O(e2)

M(8) = νsc7W8 W8(φ) = 1385−3111t2 +543t4− t6 +O(e2). (7.21)

The bar on W7 and W8 denotes that the term is evaluated in the spherical limit. This notation
will be standard from here on. Later we will need the expressions for W3, . . .W6 in the
spherical approximation: setting β = 1 gives

W3(φ)→W3(φ) = 1− t2,

W4(φ)→W4(φ) = 5− t2,

W5(φ)→W5(φ) = 5−18t2 + t4,

W6(φ)→W6(φ) = 61−58t2 + t4. (7.22)

These derivatives are more easily calculated by using Maxima (2009)—see Appendix H.

7.2 Derivation of the Redfearn series

The direct complex series

Following Section 4.3, the complex Taylor series of z(ζ ) about ζ0 on the central meridian is

z = z0+(ζ−ζ0)M
(1)
0 −

i
2!
(ζ−ζ0)

2M(2)
0 −

1
3!
(ζ−ζ0)

3M(3)
0 +

i
4!
(ζ−ζ0)

4M(4)
0

+
1
5!
(ζ−ζ0)

5M(5)
0 −

i
6!
(ζ−ζ0)

6M(6)
0 −

1
7!
(ζ−ζ0)

7M(7)
0 +

i
8!
(ζ−ζ0)

8M(8)
0 + · · · ,

(7.23)

where M(n)
0 = M(n)(ψ0), the n-th derivative of M(ψ) with respect to ψ evaluated at ψ0. The

leading term in the expansion will be recast in various forms when required:

z0 = z(ζ0) = iy0 = iM(ψ0) = iM0 (7.24)
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The direct series for x and y

For the direct series we start from a given (arbitrary) point P′ at ζ = λ + iψ and choose
ζ0 = iψ with the same ordinate in the ζ -plane. Therefore in the Taylor series (7.23) we

�
λ

ψ
ζ=λ+�ψ

ζζ ��
��

��������
��

ζ	� ����
��ψ

(ψ)��
��

���
�����

Figure 7.2

set ζ −ζ0 = λ and evaluate the derivatives at ψ0 = ψ . Writing M(n)(ψ) as M(n) and using
z0 = iM0→ iM the generalisation of equation (4.34) is

z = x+ iy = iM+λM(1)− i
2!

λ
2M(2)− 1

3!
λ

3M(3)+
i

4!
λ

4M(4)

+
1
5!

λ
5M(5)− i

6!
λ

6M(6)− 1
7!

λ
7M(7)+

i
8!

λ
8M(8)+ · · · (7.25)

The real and imaginary parts of equation (7.25) give x and y as functions of λ and ψ:

x(λ ,ψ) = λM(1)− 1
3!

λ
3M(3)+

1
5!

λ
5M(5)− 1

7!
λ

7M(7)+ · · · (7.26)

y(λ ,ψ) = M− 1
2!

λ
2M(2)+

1
4!

λ
4M(4)− 1

6!
λ

6M(6)+
1
8!

λ
8M(8)+ · · · . (7.27)

Writing M and its derivatives as functions of φ from (7.3) and (7.21) gives the Redfearn
formulae for the direct transformation as power series in λ (radians):

x(λ ,φ) = λνc+
λ 3νc3

3!
W3 +

λ 5νc5

5!
W5 +

λ 7νc7

7!
W7, (7.28)

y(λ ,φ) = m(φ)+
λ 2νsc

2
+

λ 4νsc3

4!
W4 +

λ 6νsc5

6!
W6 +

λ 8νsc7

8!
W8. (7.29)

Since all the coefficients on the right hand sides are now expressed in terms of φ , we have
replaced x(λ ,ψ) and y(λ ,ψ) on the left hand side by x(λ ,φ) and y(λ ,φ) respectively.

Conformality and the Cauchy–Riemann equations

The conformality of the above transformations may be confirmed by evaluating the Cauchy–
Riemann equations (4.15)

xλ = yψ = M(1)− 1
2!

λ
2M(3)+

1
4!

λ
4M(5)− 1

6!
λ

6M(7)+ · · · , (7.30)

xψ =−yλ = λM(2)− 1
3!

λ
3M(4)+

1
5!

λ
5M(6)− 1

7!
λ

7M(8)+ · · · . (7.31)
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The inverse complex series

We start by dividing the direct Taylor series (7.23) by a factor of M(1)
0 which, from (7.21),

is equal to ν0c0. Therefore

z− z0

ν0c0
= (ζ−ζ0)+

b2

2!
(ζ−ζ0)

2 +
b3

3!
(ζ−ζ0)

3 + · · ·+ b8

8!
(ζ−ζ0)

8 + · · · (7.32)

where we have set z0 = iy0 = iM0. The b-coefficients are

b2 =
−iM(2)

0
ν0c0

= is0

b3 =
−M(3)

0
ν0c0

= c2
0W3(φ0)

b4 =
iM(4)

0
ν0c0

= is0c2
0W4(φ0)

b5 =
M(5)

0
ν0c0

= c4
0W5(φ0)

b6 =
−iM(6)

0
ν0c0

= is0c4
0W6(φ0)

b7 =
−M(7)

0
ν0c0

= c6
0W7(φ0)

b8 =
iM(8)

0
ν0c0

= is0c6
0W8(φ0) (7.33)

where the functions on the right hand sides are evaluated at φ0 such that ψ0 = ψ(φ0).

The Lagrange reversion of an eighth order series is developed in Appendix B, Sec-
tions B.6–B.8. If we identify the series (7.32) with (B.23) by replacing (z− z0)/ν0c0 and
(ζ −ζ0) by w and z respectively we can use (B.24) to deduce that the inverse of (7.32) is

ζ −ζ0 =

(
z− z0

ν0c0

)
− p2

2!

(
z− z0

ν0c0

)2

− p3

3!

(
z− z0

ν0c0

)3

−·· ·− p8

8!

(
z− z0

ν0c0

)8

, (7.34)

where the p-coefficients are given by equations (B.25) and (B.30). We shall actually need
these coefficients at the footpoint latitude φ1 and we choose to write them as

p2 = ic1t1,

p3 = c2
1V3 V3 = β1 +2t2

1 ,

p4 = ic3
1t1V4 V4 = 4β

2
1 −9β1−6t2

1 ,

p5 = c4
1V5 V5 = 4β

3
1 (1−6t2

1)−β
2
1 (9−68t2

1)−72β1t2
1 −24t4

1 ,

p6 = ic5
1t1V6 V6 = 8β

4
1 (11−24t2

1)−84β
3
1 (3−8t2

1)+225β
2
1 (1−4t2

1)+600β1t2
1+120t4

1 ,

p7 = c6
1V7 V7 = 61+662t2

1 +1320t4
1 +720t6

1 ,

p8 = ic7
1t1V8 V8 =−1385−7266t2

1 −10920t4
1 −5040t6

1 . (7.35)



Chapter 7. Transverse Mercator on the ellipsoid (TME) 124

The inverse series for ψ and λ
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Figure 7.3

For the inverse we start from an arbitrary point with projection coordinates P′′(x,y) and
move to the footpoint at K′′(0,y) so that we set z− z0 = (x+ iy)− iy = x in equation (7.34).
We must then set ζ0 = iψ1 where ψ1 is the footpoint parameter such that M(ψ1) = y. Let φ1
be the corresponding footpoint latitude such that m(φ1) = y. Therefore (7.34) becomes

λ + iψ− iψ1 =
x

ν1c1
− p2

2!

(
x

ν1c1

)2

− p3

3!

(
x

ν1c1

)3

−·· ·− p8

8!

(
x

ν1c1

)8

, (7.36)

where the p coefficients at the footpoint latitude φ1 have already been given in (7.35). The
the real and imaginary parts are

λ (x,y) =
x

ν1c1
− x3

3!ν3
1 c1

V3−
x5

5!ν5
1 c1

V5−
x7

7!ν7
1 c1

V7, where m(φ1) = y, (7.37)

ψ−ψ1 =−
x2t1

2!ν2
1 c1
− x4t1

4!ν4
1 c1

V4−
x6t1

6!ν6
1 c1

V6−
x8t1

8!ν8
1 c1

V8. (7.38)

We see that the spherical approximation has been used only in the last term of each series.
Therefore it is equivalent to neglecting terms of order e2(x/a)7 and e2(x/a)8. This will be
justified when we look at the typical magnitude of such terms.

Finally, we note for future reference the spherical limits of the terms V3, . . .V6: since
β1→ 1 as e→ 1 we have

V3→V3 = 1+2t2
1 ,

V4→V4 =−5−6t2
1 ,

V5→V5 =−5−28t2
1 −24t4

1 ,

V6→V6 = 61+180t2
1 +120t4

1 . (7.39)

The inverse series for φ

In Chapter 6, equation (6.14) we derived the following fourth order Taylor series for the
inverse of the Mercator parameter on the ellipsoid:

φ−φ1 = (ψ−ψ1) β1c1 +
(ψ−ψ1)

2

2!
β1c2

1t1D2 +
(ψ−ψ1)

3

3!
β1c3

1D3 +
(ψ−ψ1)

4

4!
β1c4

1t1D4,

(7.40)
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where the D-coefficients are given in (6.15). All that remains is to substitute for (ψ −ψ1)
using (7.38). It is convenient to use a temporary abbreviation, setting x̃ = x/ν1.

ψ−ψ1 =− t1
c1

[
1
2!

x̃2 +
1
4!

V4x̃4 +
1
6!

V6x̃6 +
1
8!

V8x̃8
]
,

(ψ−ψ1)
2 =

t2
1

c2
1

[
1

2!2!
x̃4 +

2
2!4!

V4x̃6 +
2

2!6!
V6x̃8 +

1
4!4!

V 2
4 x̃8
]
,

(ψ−ψ1)
3 =− t3

1

c3
1

[
1

2!2!2!
x̃6 +

3
2!2!4!

V4x̃8
]
,

(ψ−ψ1)
4 =

t4
1

c4
1

[
1

2!2!2!2!
x̃8
]

where x̃ =
x
ν1
. (7.41)

Substituting these expressions into the Taylor series (7.40) gives

φ−φ1 =−
1
2!

x̃2
β1t1 [1 ]

− 1
4!

x̃4
β1t1

[
V4−3t2

1 D2
]

− 1
6!

x̃6
β1t1

[
V6−15t2

1 D2V4 +15t2
1 D3

]
− 1

8!
x̃8

β1t1
[
V8−28t2

1 D2V6−35t2
1 D2V4

2
+210t2

1 D3V4−105t4
1 D4

]
, (7.42)

where we use the spherical approximation in evaluating the eighth order term. Substitut-
ing for the D-coefficients from equations (6.15, 6.16) and the V -coefficients from equa-
tions (7.35,7.39) our final result for φ is

φ(x,y) = φ1−
x2β1t1
2ν2

1
− x4β1t1

4!ν4
1

U4−
x6β1t1
6!ν6

1
U6−

x8β1t1
8!ν8

1
U8, (7.43)

where

U4 = 4β
2
1 −9β1(1− t2

1)−12t2
1 ,

U6 = 8β
4
1 (11−24t2

1)−12β
3
1 (21−71t2

1)+15β
2
1 (15−98t2

1 +15t4
1)

+180β1(5t2
1 −3t4

1)+360t4
1

U8 =−1385−3633t2
1 −4095t4

1 −1575t6
1 . (7.44)

Later we shall require U4 and U6 in the spherical approximation:

U4→U4 =−5−3t2
1 ,

U6→U6 = 61+90t2
1 +45t4

1 , (7.45)



Chapter 7. Transverse Mercator on the ellipsoid (TME) 126

7.3 Convergence and scale in TME

This section parallels the calculation of convergence and scale factor series given in Sec-
tion 4.5, starting from equations 4.75 and 4.76:

tanγ(λ ,ψ) =
yλ

xλ

, tanγ(x,y) =−ψx

λx
, (7.46)

m(λ ,ψ) = xλ secγ(λ ,ψ),
1

m(x,y)
= λx secγ(x,y). (7.47)

The scale factors m are those for the transformation between the (λ ,ψ) and (x,y) complex
planes. They must be multiplied by the the scale factor from the ellipsoid to the plane:

k(λ ,φ) = kNME(λ ,φ)m(λ ,ψ(φ)), k(x,y) = kNME(x,y)m(x,y), (7.48)

where we have introduced new notation for the scale factors of NME defined in equa-
tions 6.17 and 6.18. In the latter ψ is a function of (x,y) through the inverse series 7.38
and the definition of the footpoint latitude such that m(φ1) = y.

Series for partial derivatives

The above expressions for the convergence and scale factors depend on the partial deriva-
tives xλ , yλ , λx, ψx of the series 7.28, 7.29, 7.37, 7.38. Setting λ̃ = λc and x̃ = x/ν1

xλ =
∂x
∂λ

= νc
[

1+
1
2

λ̃
2W3 +

1
24

λ̃
4W5 +

1
720

λ̃
6W7,

]
, λ̃ = λc (7.49)

yλ =
∂y
∂λ

= νs λ̃

[
1+

1
6

λ̃
2W4 +

1
120

λ̃
4W6 +

1
5040

λ̃
6W8

]
, (7.50)

λ x =
∂λ

∂x
=

1
ν1c1

[
1− 1

2
x̃2V3−

1
24

x̃4V5−
1

720
x̃6V7

]
, x̃ =

x
ν1

(7.51)

ψx =
∂ψ

∂x
=− t1x̃

ν1c1

[
1+

1
6

x̃2V4 +
1

120
x̃4V6 +

1
5040

x̃6V8

]
. (7.52)

Note that, apart from the overall multiplicative terms, the series for λx and ψx are obtained
from those for xλ and yλ by λ̃ → x̃ and Wn→−Vn (n odd) and Wn→Vn (n even).

NB. In constructing the transformation series 7.28, 7.29, 7.37, 7.38 we discarded terms of
order greater than λ

8 and (x/a)8 so we must discard terms of order greater than λ
7 and

(x/a)7 in the derivatives and in any expressions obtained by manipulation of the above
series. Moreover the coefficients of λ̃ 7, x̃7, λ̃ 8 and x̃8 terms of the transformation series
were evaluated in the spherical approximation (e = 0, β = 1); therefore, for consistency, we
must use the spherical approximation in coefficients of terms of the order λ̃ 6, λ̃ 7, x̃6, and x̃7

wherever they arise in the manipulation of the series for the derivatives.
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The quotient of yλ and xλ

Using (E.31) we find the inverse of xλ in (7.49) as

νc
xλ

= 1− λ̃
2
(

W3

2

)
− λ̃

4
(

W5

24
−W 2

3
4

)
− λ̃

6

(
W7

720
−W3W5

24
+

W3
3

8

)
. (7.53)

Note that the W3 and W5 which the inversion casts into the coefficient of λ 6 have been
replaced by their spherical limits. The product of the above with (7.50) gives

yλ

xλ

= t λ̃

[
1+a2λ̃

2 +a4λ̃
4 +a6λ̃

6
]
. (7.54)

The an coefficients (and their spherical limits) are calculated using (7.21, 7.22)

a2 =
W4

6
−W3

2
=

1
3

[
2β

2−β + t2
]
, a2 =

1
3
(
1+ t2)

a4 =
W6

120
−W3W4

12
+

W 2
3

4
−W5

24
,

=
1
15

[
β

4(11−24t2)−β
3(11−36t2)+β

2(2−4t2)−4β t2+2t4
]
, a4 =

1
15
(
2+4t2+2t4)

a6 =
W8

5040
−W3W6

240
+

W3
2
W4

24
−W4W5

144
−W3

3

8
+

W3W5

24
−W7

720

=
1

315

[
17+51t2 +51t4 +17t6

]
. (7.55)

The quotient of ψx and λx

From the comment immediately after equation (7.52) we see that if we define

ψx

λx
=−t1 x̃

[
1+ r2x̃2 + r4x̃4 + r6x̃6] (7.56)

then the rn coefficients follow by analogy with equations (7.55). Using (7.35, 7.39) we find
that coefficients and their spherical limits are

r2 =
V4

6
+

V3

2
=

1
3

[
2β

2
1 −3β1

]
, r2 =−

1
3

r4 =
V6

120
+

V3V4

12
+

V 2
3
4

+
V5

24
,

=
1

15

[
β

4
1 (11−24t2

1)−3β
3
1 (8−23t2

1)+15β
2
1 (1−4t2

1)+15β1t2
1

]
, r4 =

2
15

r6 =
V8

5040
+

V3V6

240
+

V3
2
V4

24
+

V4V5

144
+

V3
3

8
+

V3V5

24
+

V7

720
=− 17

315
. (7.57)

Note the absence of terms in t2, t4 or t6 in the coefficients r2, r4 or r6.
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7.4 Convergence in geographical coordinates

From equations (7.46) and (7.54) we have

tanγ(φ ,λ ) = λ̃ t
[
1+a2λ̃

2 +a4λ̃
4 +a6λ̃

6
]

(7.58)

and we calculate γ as arctan(tanγ) by using the series (E.20):

γ = tanγ− 1
3

tan3
γ +

1
5

tan5
γ− 1

7
tan7

γ + · · · . (7.59)

To order λ̃ 7 the higher powers of tanγ are given by

tan2
γ = λ̃

2t2[1+2a2λ̃
2 +(2a4 +a2

2)λ̃
4
]

tan3
γ = λ̃

3t3
[
1+3a2λ̃

2 +3(a4 +a2
2)λ̃

4
]

tan4
γ = λ̃

4t4
[
1+4a2λ̃

2
]

tan5
γ = λ̃

5t5
[
1+5a2λ̃

2
]

tan6
γ = λ̃

6t6

tan7
γ = λ̃

7t7 (7.60)

so that

γ = λ̃ t +
λ̃ 3t
3
[
3a2−t2]+ λ̃ 5t

5
[
5a4−5a2t2+t4]+ λ̃ 7t

7
[
7a6−7

(
a4+a2

2
)
t2+7a2t4−t6] .

(7.61)

Substituting the a-coefficients from (7.55) gives the final result

γ(λ ,φ) = λ̃ t +
1
3

λ̃
3t H3 +

1
15

λ̃
5t H5 +

1
315

λ̃
7t H7, λ̃ = λc. (7.62)

H3 = 2β
2−β ,

H5 = β
4(11−24t2)−β

3(11−36t2)+β
2(2−14t2)+β t2,

H7 = 17−26t2 +2t4. (7.63)

We also require an expression for secγ for equation 7.47:

secγ =
{

1+ tan2
γ
}1/2

= 1+
1
2

tan2
γ− 1

8
tan4

γ +
1
16

tan6
γ + · · ·

= 1+
1
2

λ̃
2t2 +

1
8

λ̃
4 [8a2t2− t4]+ 1

16
λ̃

6 [16a4t2 +8a2
2t2−8a2t4 + t6] (7.64)
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7.5 Convergence in projection coordinates

From (7.46) and (7.56) and

tanγ(x,y) = t1x̃
[
1+ r2x̂2 + r4x̂4 + r6x̂6] . (7.65)

Comparing this equation with (7.58) we see from equation (7.61) that

γ = x̃t1+
x̃3t1

3
[
3r2−t2

1
]
+

x̃5t1
5
[
5r4−5r2t2

1+t4
1
]
+

x̃7t1
7
[
7r6−7

(
r4+r2

2
)
t2
1+7r2t4

1−t6
1
]
.

(7.66)

Substituting the r-coefficients from (7.57) gives

γ(x,y) = x̃t1 +
1
3

x̃3t1K3 +
1

15
x̃5t1K5 +

1
315

x̃7t1K7, x̃ =
x
ν1
, (7.67)

where

K3 = 2β
2
1 −3β1− t2

1 ,

K5 = β
4
1 (11−24t2

1)−3β
3
1 (8−23t2

1)+5β
2
1 (3−14t2

1)+30β1t2
1 +3t4

1 ,

K7 =−17−77t2
1 −105t4

1 −45t6
1 . (7.68)

Setting β1 = ν1/ρ1 gives the Redfearn series (apart from minor typos where he writes ν

rather than ν1 etc.

We also need an expression for secγ(x,y). Comparison with 7.64 gives

secγ(x,y) = = 1+
1
2

x̃2t2
1 +

1
8

x̃4 [8r2t2
1 − t4

1
]
+

1
16

x̃6 [16r4t2
1 +8r2

2t2
1 −8r2t4

1 + t6
1
]

(7.69)

7.6 Scale factor in geographical coordinates

In 7.48 substitute for kNME(λ ,φ) and m(λ ,ψ(φ)) from 6.17 and 7.47 respectively:

k(λ ,φ) = kNME(λ ,φ)m(λ ,ψ(φ)) =
xλ secγ(λ ,φ)

ν cosφ
, (7.70)

where xλ is given in equation (7.49) and secγ in (7.64):

xλ

νc
= 1+

1
2

λ̃
2W3 +

1
24

λ̃
4W5 +

1
720

λ̃
6W7, (7.71)

secγ = 1+
1
2

λ̃
2t2 +

1
8

λ̃
4 [8a2t2− t4]+ 1

16
λ̃

6 [16a4t2 +8a2
2t2−8a2t4 + t6] (7.72)
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Therefore

k(λ ,φ) = 1+
1
2

λ̃
2(W3 + t2)+ 1

24
λ̃

4(W5 +6t2W3 +24a2t2−3t4)
+

λ̃ 6

720
(
W7+15t2W5+360a2t2W3−45t4W3+720a4t2+360a2

2t2−360a2t4+45t6)
(7.73)

Using the W -coefficients from (7.21 7.22) and the a-coefficients from (7.55),

k(λ ,φ) = 1+
1
2

λ̃
2H2 +

1
24

λ̃
4H4 +

1
720

λ̃
6H6, λ̃ = λc, (7.74)

H2 = β

H4 = 4β
3(1−6t2)+β

2(1+24t2)−4β t2

H6 = 61−148t2 +16t4. (7.75)

7.7 Scale factor in projection coordinates

In 7.48 substitute for kNME(x,y) and m(x,y) from 6.20 and 7.47 respectively:

k(x,y) = kNME(x,y)m(x,y) =
k(ψ)

λx secγ
. (7.76)

Using 6.20 and (7.38) for ψ−ψ1 gives

k(ψ) =
1

ν1c1

[
1+E1(ψ−ψ1)+E2(ψ−ψ1)

2 +E3(ψ−ψ1)
3 + · · ·

]
(7.77)

=
1

ν1c1

[
1−E1

x2t1
2ν2

1 c1

(
1+

x2

12ν2
1

V4 +
x4

360ν4
1

V6

)
+

1
2

E2
x4t2

1

4ν4
1 c2

1

(
1+

x2

6ν2
1

V4

)
− 1

6
E3

x6t3
1

8ν6
1 c3

1
+ · · ·

]
,

=
1

ν1c1

[
1+

1
2

x̃2q2 +
1
24

x̃4q4 +
1

720
x̃6q6

]
, x̃ =

x
ν1
. (7.78)

With the E coefficients from 6.21 and the V coefficients from 7.35 and 7.39,

q2 =−E1
t1
c1

=−t2
1 ,

q4 =−E1
t1
c1

V4 +3E2
t2
1

c2
1

= 12β1t2
1 −4β

2
1 t2

1 +9t4
1 ,

q6 =−E1
t1
c1

V6 +15E2
t2
1

c2
1
V4−15E3

t3
1

c3
1
=−136t2

1 −360t4
1 −225t6

1 , (7.79)

where the coefficient of x6 is evaluated in the spherical limit (β1=1).
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Combining the results for λx, secγ(x,y) and the rn from equations 7.51, 7.69 and 7.57
respectively gives

λx secγ =
1

ν1c1

[
1+

1
2

x̃2 p2 +
1
24

x̃4 p4 +
1

720
x̃6 p6

]
, (7.80)

where

p2 =−β1− t2
1 p2 =−1− t2

1

p4 =−4β
3
1 (1−6t2

1)+β
2
1 (9−52t2

1)+42β1t2
1 +9t4

1 p4 = 5+14t2
1 +9t4

1

p6 =−61−331t2
1 −495t4

1 −225t6
1 . (7.81)

Using (E.32) to evaluate the inverse

1
λx secγ

= ν1c1

[
1+

1
2

x̃2g2 +
1
24

x̃4g4 +
1

720
x̃6g6

]
, (7.82)

where

g2 =−p2 = β1 + t2
1 ,

g4 =−p4 +6p2
2 = 4β

3
1 (1−6t2

1)+β
2
1 (−3+52t2

1)−30β1t2
1 −3t4

1 ,

g6 =−p6 +30p2 p4−90p3
2 = 1+31t2

1 +75t4
1 +45t6

1 . (7.83)

Therefore, combining 7.78 and 7.82,

k(x,y) =
k(ψ)

λx secγ
=

[
1+

1
2

x̃2K2 +
1
24

x̃4K4 +
1

720
x̃6K6

]
, x̂ =

x
ν1
, (7.84)

with

K2 = q2 +g2 = β1,

K4 = q4 +6q2g2 +g4 = 4β
3
1 (1−6t2

1)−3β
2
1 (1−16t2

1)−24β1t2
1 ,

K6 = q6 +15q4g2 +15q2g4 +g6 = 1. (7.85)

Setting β1 = ν1/ρ1 gives the Redfearn series except that in the sixth order term he has a
denominator of ν3

1 ρ3
1 as against ν6

1 here. Since we assume the spherical limit for this term
both could be replaced by a6 and there is no inconsistency.

Comment: all of the preceeding series may be modified for a secant version of the
projection which has a wider region within a prescribed scale tolerance. The series
may also be applied to an arbitrary central meridian by replacing λ by λ−λ0. The
following summary includes both of these factors, k0 and λ0.
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7.8 Redfearn’s modified (secant) TME series

Direct series
As for NMS, TMS and NME simply multiply (7.28) and (7.29) by a factor of k0.

x(λ ,φ) = k0ν

[
λ̃ +

λ̃ 3

3!
W3 +

λ̃ 5

5!
W5 +

λ̃ 7

7!
W7

]
, λ̃ = (λ−λ0)c (7.86)

y(λ ,φ) = k0

[
m(φ)+

λ̃ 2νt
2

+
λ̃ 4νt

4!
W4 +

λ̃ 6νt
6!

W6 +
λ̃ 8νt

8!
W8

]
. (7.87)

Inverse series:

Set x→x/k0 and replace x̃ = x/ν1 by x̂ = x/k0ν1. The footpoint latitude, φ1, must be found
from (7.5) or (7.6) with y→y/k0: it is the solution of m(φ1) = y/k0. Equations 7.37, 7.38
and 7.43 become

λ (x,y) = λ0 +
x̂
c1
− x̂3

3!c1
V3−

x̂5

5!c1
V5−

x̂7

7!c1
V7, x̂ =

x
k0ν1

(7.88)

ψ(x,y) = ψ1−
x̂2t1
2c1
− x̂4t1

4!c1
V4−

x̂6t1
6!c1

V6−
x̂8t1
8!c1

V8. m(φ1) =
y
k0

(7.89)

φ(x,y) = φ1−
x̂2β1t1

2
− x̂4β1t1

4!
U4−

x̂6β1t1
6!

U6−
x̂8β1t1

8!
U8, (7.90)

Scale and convergence.

The calculations of the present chapter may be applied to the modified series above. Clearly
the derivatives xλ , yλ pickup a factor of k0 and the derivatives λx, ψx pickup a factor of 1/k0.
The modified forms of 7.74, 7.62, 7.84 and 7.67 become

k(λ ,φ) = k0

[
1+

1
2

λ̃
2H2 +

1
24

λ̃
4H4 +

1
720

λ̃
6H6

]
, λ̃ = (λ −λ0)c, (7.91)

γ(λ ,φ) = λ̃ t +
1
3

λ̃
3t H3 +

1
15

λ̃
5t H5 +

1
315

λ̃
7t H7, (7.92)

k(x,y) = k0

[
1+

1
2

x̂2K2 +
1
24

x̂4K4 +
1

720
x̂6K6

]
, m(φ1) =

y
k0
, (7.93)

γ(x,y) = x̂t1 +
1
3

x̂3t1K3 +
1
15

x̂5t1K5 +
1

315
x̂7t1K7, x̂ =

x
k0ν1

. (7.94)

As usual c=cosφ , t= tanφ , β=ν(φ)/ρ(φ) from (5.53) and the ‘1’ subscript denotes
a function evaluated at the footpoint latitude such that m(φ1) = y/k0. For convenience all of
the required coefficients are collected on the following page.
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All coefficients

x(λ ,φ) W3 = β − t2

W5 = 4β
3(1−6t2)+β

2(1+8t2)−2β t2 + t4

W7 = 61−479t2 +179t4− t6 +O(e2)

y(λ ,φ) W4 = 4β
2 +β − t2

W6 = 8β
4(11−24t2)−28β

3(1−6t2)+β
2(1−32t2)−2β t2 + t4

W8 = 1385−3111t2 +543t4− t6 +O(e2)

λ (x,y) V3 = β1 +2t2
1

V5 = 4β
3
1 (1−6t2

1)−β
2
1 (9−68t2

1)−72β1t2
1 −24t4

1

V7 = 61+662t2
1 +1320t4

1 +720t6
1

ψ(x,y) V4 = 4β
2
1 −9β1−6t2

1

V6 = 8β
4
1 (11−24t2

1)−84β
3
1 (3−8t2

1)+225β
2
1 (1−4t2

1)+600β1t2
1+120t4

1

V8 =−1385−7266t2
1 −10920t4

1 −5040t6
1

φ(x,y) U4 = 4β
2
1 −9β1(1− t2

1)−12t2
1

U6 = 8β
4
1 (11−24t2

1)−12β
3
1 (21−71t2

1)+15β
2
1 (15−98t2

1 +15t4
1)

+180β1(5t2
1 −3t4

1)+360t4
1

U8 =−1385−3633t2
1 −4095t4

1 −1575t6
1

k(λ ,φ) H2 = β

H4 = 4β
3(1−6t2)+β

2(1+24t2)−4β t2

H6 = 61−148t2 +16t4

γ(λ ,φ) H3 = 2β
2−β

H5 = β
4(11−24t2)−β

3(11−36t2)+β
2(2−14t2)+β t2

H7 = 17−26t2 +2t4

k(x,y) K2 = β1

K4 = 4β
3
1 (1−6t2

1)−3β
2
1 (1−16t2

1)−24β1t2
1

K6 = 1

γ(x,y) K3 = 2β
2
1 −3β1− t2

1

K5 = β
4
1 (11−24t2

1)−3β
3
1 (8−23t2

1)+5β
2
1 (3−14t2

1)+30β1t2
1 +3t4

1

K7 =−17−77t2
1 −105t4

1 −45t6
1 (7.95)
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Comments

1. The series given on the previous page are in full accordance with those printed in
Redfearn (1948). They differ slightly in format since Redfearn writes the series in
terms of ρ(φ) and ν(φ) rather than β (φ) and ν(φ). In Redfearn’s paper a few ’1’
subscripts are omitted in the inverse series.

2. The series are also in full accordance with those printed in Thomas (1952) but he uses
a different notation which will be exhibited in the following chapter. Thomas gives
the full seventh and eighth order terms without the spherical approximation. (See
page 95 et. seq. Beware his use of ρ as a conversion factor to radian measure.)

3. In Chapter 8 we discuss the series in the context of two important applications, UTM
(1989) and OSGB (1999).

4. The TME projection is used with k0 = 0.9996 by both UTM and OSGB.

5. For OSGB the central meridian is at λ0=− 2. UTM is a set of 60 different TME
projections with λ0 =−177,−171, . . .−3, 3, . . .171, 177 degrees.

6. For computational purposes the series should be written in a ‘nested’ form. For ex-
ample equation (7.86) can be written as

x(λ ,φ) = νλ̃

[
1+ λ̃

2

{
W3(φ)

3!
+ λ̃

2

(
W5(φ)

5!
+ λ̃

2W7(φ)

7!

)}]
, λ̃ = (λ −λ0)c.

(7.96)

Implementation

The transformations presented in this chapter are incorporated into several online calcula-
tors:

1. Geotrans (2010) is provided by the National geospatial intelligence agency. The code
is based on the slightly different formulae of Thomas (1952, page 2) who uses the
parameter η2 instead of the β used here. The relation between them is

η
2 = β −1 =

ν

ρ
−1 =

e2 cos2φ

1− e2 = e′2 cos2
φ . (7.97)

where e′ is the second eccentricity. To complicate matters the actual code of Geotrans
uses eta in place of the η2 of Thomas. (See code at lines 223, 472–503). Geotrans
converts between geodetic and UTM coordinates.

http://earth-info.nga.mil/GandG/geotrans/geotrans3.2/docs/html/_transverse_mercator_8cpp_source.html
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Chapter8
Applications of TME

Abstract

Coordinates, grids and origins. UTM. The British grid (NGGB). Scale variation
and convergence. Accuracy of TME series. Approximations to the series. The
OSGB series.

8.1 Coordinates, grids and origins

The transverse Mercator projection of the ellipsoid (TME) is used officially in the United
Kingdom (OSGB, 1999), the United States, Ireland, Sweden, Norway, Finland, Poland,
Russia, China, . . . . (For a more complete list see Stuifbergen (2009), page 21). TME is also
the basis for world-wide systematic coverage by the 60 Universal Transverse Mercator pro-
jections (UTM, 1989). In each case the projections are applied to geographical coordinates
(λ ,φ) defined with respect to different datums for each of which the ellipsoid parameters
(a, e) and the longitude of the central meridian must be specified before applying the Red-
fearn formulae of the previous chapter.

Countries of narrow extent may be covered by a single zone: for example the National
Grid of Great Britain (NGGB) has a width of almost 10◦. Most countries require several
zones. Zone widths vary but few exceed a value of 10◦ at which errors in the transformations
start to become significant. The scale factor on the central meridian also varies: NGGB and
UTM use 0.9996, South Africa uses 1, Canada uses 0.9999 etc.

The Redfearn formulae determine coodinates (x,y) which we shall refer to as projection
coordinates; their origin is always at the intersection of the central meridian and the equator
and their axes are usually designated as x along the equator and y normal to the equator.
Projection coordinates must be distinguished from grid coordinates. Grids are normally
aligned to the underlying Cartesian system of the projection coordinates but the true origin
of the grid may differ from the origin of the projection coordinates. For example the true
origin of a UTM grid coincides with that of the projection coordinates but for the British
grid the true origin is at a latitude of 49◦N on the central meridian.

Since the true origin of a grid is always on the central meridian it follows that grid
coordinate for points west or south of the true origin are negative. To avoid such negative
coordinates the grid coordinates are usually referred to a false origin chosen so that all
values are positive. Such grid coordinates, rounded to the nearest metre, are normally called
the easting and northing, denoted by E and N. Examples of true and false origins will be
given in the following sections.
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8.2 The UTM projection

UTM is a set of 60 TME projections based on the WGS (1984) ellipsoid; each is restricted
to 3◦ in longitude from the central meridians at λ0 =−177, −171, −165. . . . Zones 16, 34
and 53, centred on λ0 =−87, 21, 135, are shown below alongwith an enlarged view of zone
34. In each case the UTM grid is restricted to the red rectangle but the actual zones are
bounded by meridians at 3◦from the central meridian and parallels at 84◦N and 80◦S.

λ0 =−87◦

λ0 = 21◦

λ0 = 135◦

Figure 8.1
.
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8.3 UTM coordinate systems

Figure 8.2 shows UTM zone number 30 which in-
cludes my home city of Edinburgh at H: the pro-
jection is centred on 3◦W and it covers the region
between parallels at 84◦N and 80◦S and between
the meridians at 6◦W and Greenwich. The fig-
ure is not to scale: the true shape of any zone is
shown on the right of Figure 8.1. The true origin
T of the UTM grid coincides with the origin of the
projection at O where the central meridian meets
the equator at 3◦W. We treat the hemispheres dif-
ferently and introduce two false origins; both are
500000m west of the true origin but one, for the
northern hemisphere, is at F1 on the equator and
the other, for the southern hemisphere, is at a
point F2 10000000m below the equator on the pro-
jection.Therefore the eastings and northings for
points in the northern and southern hemispheres
are

E = E0+ x(λ ,φ), E0 = 500000 (8.1)

N = N0+ y(λ ,φ) N0 =

{
0 (N)

10000000 (S)
(8.2)

equator

N

x

y

N

E

E

F OT1

F2

500000

3W6W 0

3W
0 1000000

0

1116915

9329005

534995
833979

10000000

558132

488533
6200666H

80S

84N
166021

Figure 8.2

where x, y are calculated (to the nearest metre) using the series of Section 7.8 with λ0 =−3◦,
k0 =0.9996 and the parameters (a,e) of the WGS ellipsoid given in 5.2. Points on the
equator are defined to be part of the northern grid so they must have N = 0. Note that
(E0, N0) are the coordinates of the true origin (at T or O) relative to the false origin on
each grid. The inverse relations are calculated from Section 7.8 with the replacement of x
by E−E0 and coefficients evaluated at a footpoint latitude such that

m(φ1) =
y
k0

=
N−N0

k0
. (8.3)

The figure shows eastings and northings of several points on the perimeter of the zone.
The coordinates may be calculated by using Geotrans (2010) (see also Implementation) or
by the web conversion program GeoConvert which is downloadable from Karney (2010)
The most easterly (respectively westerly) points of zone 30 have φ = 0 and λ −λ0 =±3◦ =
±0.05236rad, for which E=166021 (respectively 833979). Therefore the maximum width
of a UTM zone is 667.958km in terms of the projection coordinates. This is not exactly the
same as the corresponding distance on the WGS ellipsoid, viz. 2πa/60=667.917km because
the scale factor on the equator is not unity (and not constant). See Section 8.5.

http://geographiclib.sourceforge.net/html/GeoConvert.1.html
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The figure also shows the coordinates at the most northerly and southerly points of the
projection where the bounding meridians at λ = λ0±3 meet the parallels at 84◦N and 80◦S.
The northings of the two northernmost points are given by N = 9329005 on the northern
grid. Their eastings are given by E = 465005 and E = 534995. The coordinate separation
of these points is 69.990km whereas the rhumb line distance measured along the parallel at
latitude 84◦N is ν cosφ δλ = 70.049km and the great circle distance is 70.017km.

UTM grid reference system
Eastings and Northings are measured in metres and provide a purely numeric grid ref-

erence system within each UTM zone. To specify a point uniquely on the the Earth, at least
between latitudes 84◦N and 80◦S, requires a zone number, a hemisphere specifier (N or S),
the easting and the northing. Therefore my armchair location is at

30N 488533 6200666

In this work we do not discuss the coordinate systems used in the polar regions. These are
discussed in the DMA publications, UTM (1989).

The military grid reference system (MGRS)
MGRS is alpha-numeric with the following components in addition to the zone number.

• Each zone is split into twenty latitude sub-zones, nineteen of extent 8◦ starting from
80◦S and one of 12◦ finishing at 84◦N. Each of these twenty latitude bands is des-
ignated a zone letter from C to X, with I and O excepted (to avoid ambiguity with
digits 1 and 0). My home (approximately 55◦57′4.4′′N, 3◦11′1.1′′W using WGS co-
ordinates) is just within the northern limit of zone/band 30U, centred on 3◦W and
running from 48◦ to 56◦N. The extent of this sub-zone in projection coordinates is
approximately 890km north-south whilst the width varies from 447km to 373km as
one goes north. There are minor adjustments of the zone/band scheme in northern
Europe.

• Within the sub-zones the 100km squares are labelled with row and column letters.
For a full description of the labelling of the 100km squares see the DMA manual:
(UTM, 1989, Volume 1, Chapter 3). For example Edinburgh is in the 100km square
labelled UG inzone 30 and band U. Thus 30UUG fixes my home to within 100km.
Boundary points are included in a square if they are on the west or south edges.

• Within a 100km square the Eastings and Northings range from 0 to 99999m so that
1m accuracy is given by two five digit numbers. Thus the full UTM grid reference of
my armchair is 30UVH 88533 00666. The leading zeroes must be specified.

• Such precision is often superfluous and two numbers of 4, 3, 2, 1 digits may be used
for accuracy to within 10m, 100m, 1km, 10km. Thus

– 30UVH 8853 0066 fixes my home to within 10m
– 30UVH 885 006 . . . . . . . . . . . . . . . . . . . . . . . . . 100m
– 30UVH 88 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1km
– 30UVH 8 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10km

http://commons.wikimedia.org/wiki/File:Utm-zones.jpg
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8.4 The British national grid: NGGB

The British national grid (NGGB) (OSGB, 1999) is a grid overlain on the TME projection
centred on longitude 2◦W with coordinates defined on the Airy 1830 ellipsoid, for which the
equatorial radius is 6377563.396m and the inverse flattening is 299.3249753. (The derived
minor axis is 6356256.910m and the derived eccentricity is 0.0816733724.) It is a secant
projection with a value of k0 = 0.9996012717 on the central meridian. The pre-1936 value
was 0.9996 but after the 1936 re-survey the value of k0 was adjusted so that the coordinates
of a selected group of locations were as close as possible to their previous values. For most
practical purposes, and in the remainder of this chapter, we will take k0 = 0.9996.

λ=−17◦ −2◦ 0◦ 13◦

P

T
F

15◦

30◦

45◦

60◦

Figure 8.3

The figure shows the central and northern part
of the TME projection with λ0 = −2◦, (2◦W). The
origin of the projection coordinates is at the point
P where the central meridian intersects the equator.
The graticule meridians shown are at intervals of
15◦measured from the central meridian; the Green-
wich meridian is also indicated. The NGGB grid
covers only a small part of the projection, just the
small box shown in the figure. The true origin for
the grid is taken at the point T with latitude φ0 = 49◦

(0.855rad) on the central meridian. The false origin
is then chosen west and north of the true origin with
E0=400000m and N0=−100000m. The mapped area
is completely to its east and north and all E and N
values are positive. Recall that E0 and N0 give the
position of the true origin relative to the false origin.

Figure 8.4 shows the NGGB grid in greater de-
tail. It covers longitudes from 2◦E to almost 8◦W,
an interval of 10 degrees compared to the 6 degrees
of UTM. The longitude range is not symmetric about
the central meridian—4 degrees to the east but 6 de-
grees to the west. This means that NGGB requires
use of the Redfearn transformation formulae at up to
6 degrees from the central meridian when we con-
sider locations on the Outer Hebrides.

The grid extends 700km east of the false origin and 1300km north. The actual grid area
is divided into 100km squares coded with letter pairs which are used in the alpha-numeric
grid reference scheme. That part of the grid which is excluded by virtue of the overlap with
the Irish grid is shown by the dashed line in the figure. There are two Irish grid systems in
use at the moment. The old system is based on a slightly modified Airy ellipsoid with a true
origin on at 53◦30′N, 8◦W and a false origin such that E0=200000m and N0=250000m.
The scale modification is k0 = 1.000035. The new system is based on the WGS84 ellipsoid
with the same true origin but E0=600000m and N0=750000m.

http://en.wikipedia.org/wiki/Irish grid referencesystem
http://www.osi.ie/Services/GPS-Services/Reference-Information/GPS-Reference-Systems.aspx
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Figure 8.4 The region covered by the British National Grid (NGGB).
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The scale factor varies by small amounts over the grid. On the central meridian it
is constant at the nominal value 0.9996. The scale increase by 0.0004 to k = 1 on two
lines which are approximately straight and approximately 180km from the central meridian.
The curvature of these isoscale lines is hardly detectable in the figure. The scale increases
by a further factor of 0.0004 on two curved lines approximately 255km from the central
meridian, a further distance of 75km compared with the first 180km. Outside of these
lines the scale factor starts to increase rapidly showing that the TME projections must be
restricted to limited longitude ranges. See Section 8.5 for more detail.

With the exception of the central meridian all meridians and parallels are curved with
values of latitude and longitude indicated on the right and top sides of the outer rectangle.
As a consequence true north differs from grid north except on the central meridian, the
difference being given by the convergence. All parallels are concave upwards and true
east agrees with grid lines only at the point where the parallel crosses the central meridian.
The difference between true east and grid east is also determined by the convergence. The
curvature of meridians and parallels is small but noticeable and important in high accuracy
survey work. Numerical values are discussed in Section 8.6

NGGB grid references

The relation between projection coordinates and eastings and northings must take into ac-
count the fact that the true origin is not on the equator. Since y(0,φ0) = k0m(φ0)

E = E0+ x(λ ,φ) (8.4)

N = N0+[y(λ ,φ)− k0m(φ0)] , (8.5)

φ0 = 49◦ = 0.8552 radians and the distance of the true origin from the equator (on the Airy
ellipsoid) is m(φ0) = m(0.8552) = 5429228.6m. The true origin is E0=400000m east and
N0=−100000m north of the false origin. Therefore

E = x+400000, (8.6)

N = y−5527064, (8.7)

where x and y are calculated from the series of Section 7.8 The inverse transformations are
also calculated from Section 7.8 with x replaced by E−E0 and φ1 calculated from

m(φ1) =
y
k0

=
N−N0

k0
+m(φ0) (8.8)

My position on the NGGB datum is 55◦ 57′ 4.6′′N, 3◦ 10′ 55.9′′W (obtained from the
WGS value by using Geotrans (2010)). Using the above formulae I calculate that, to the
nearest metre, I am sitting at E=326185, N=673765. This is in the 100km square labelled
NT so the alpha-numeric grid reference is NT 26185 73765 to within 1m. As for UTM
we can use shorter grid references such as NT26187376, NT261737, NT2673, NT27 for
accuracy to within 10m, 100m, 1km, 10km. (Grid references truncated).
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8.5 Scale variation in TME projections

Scale variation in TMS

Since the differences between TMS and TME are small it is instructive to consider the TMS
scale factor (equation 3.75 and Section 3.4):

k(x,y)
∣∣∣
TMS

= k0 cosh x̂ = k0

[
1+

1
2

x̂2 +
1
24

x̂4 +
1

720
x̂6 + · · ·

]
x̂ =

x
k0R

(8.9)

This function is plotted above for k0 = 0.9996 and R = 6372km (the tri-axial mean for the
WGS ellipsoid). The values of k at which the scale factor equals 1 and 1.0004 (isoscale
lines) are given by inverting equation 8.9 to x = k0Rcosh−1(k/k0). The values are 180km
and 255km respectively. The other values indicated at x =300km and x =333km correspond
to the maximum values of x attained in a UTM zone and the NGGB grid respectively.

There is no variation of scale on a grid line with constant y. However, as we move
northwards from the equator on a meridian λ remains constant, x decreases and therefore
the scale factor decreases. The variation of scale on the meridian is given by the segment of
the above graph which lies between the x-values at the ends of the meridian segment. For
example, if λ = 3◦ then it has x = 333km on the equator and x = 34.9km at latitude 84◦N:
the scale decreases from 1.00098 to 0.999614 on the meridian between these values.

Scale variation in TME

The scale factor in projection coordinates for TME is given by equation (7.93):

k(x,y) = k0

[
1+

1
2

x̂2K2 +
1
24

x̂4K4 +
1

720
x̂6K6

]
x̂ =

x
k0ν1

(8.10)

K2 = β1 ,

K4 = 4β
3
1 (1−6t2

1)−3β
2
1 (1−16t2

1)−24β1t2
1 ,

K6 = 1, (8.11)
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where β1 and t1 are evaluated at the footpoint latitude such that m(φ1) = y/k0 and y is related
to the northing coordinate by equation (8.2) or (8.7) for UTM or NGGB respectively. To
simplify the comparison of the TMS and TME scale factors it is useful, to write K2 and K4
in terms of the η parameter which is used in the TME series as given by Thomas (1952)
and OSGB (1999). It is defined as:

η
2 = β −1 =

ν

ρ
−1 =

e2 cos2φ

1− e2 = e′2 cos2
φ . (8.12)

The non-trivial coefficients become

K2 = 1+η
2
1

K4 = 1+6η
2
1 +η

4
1 (9−24t2

1)+η
6
1 (4−24t2

1) (8.13)

As e2, η2 → 0 the TME scale factor reduces to the TMS scale factor. Their difference is
given by terms of order η2

1 x̂2 and η2
1 x̂4 which are never more than 10−5 and 10−8 respec-

tively over the projection region. Therefore Figure 8.5 is an adequate representation of the
TME scale variation with x for any value of η1 calculated for the footpoint value corre-
sponding to y. Note that in working with the TME series we must not assume that the t1
terms are small: at a footpoint latitude of 80◦ we have t1= tanφ1 ≈ 5.7 and t2

1 ≈ 32. On the
other hand at large latitudes the values of x are much less than their maximum values at the
equator. These two factors compensate to some extent.

Isoscale lines of TME

To find the isoscale lines in TME we must invert invert equation 8.10. To do this we write
the equation as

w≡ 2
K2

(
k
k0
−1
)
= x̂2 +

1
12

x̂4 K4

K2
+

1
360

x̂6 K6

K2
x̂ =

x
k0ν1

. (8.14)

The inverse is evaluated by using the Lagrange series reversion given in equations (B.10–
B.11) with z replaced by x̂2:

x̂2 = w−
(

K4

12K2

)
w2−

(
K2K6−5K2

4

360K2
2

)
w3 w =

2
K2

(
k
k0
−1
)
, (8.15)

from which we can find x = k0ν1x̂ , and hence (E−E0), as a function of k at any given value
of N, i.e. E(k,N). Results are given below.

Numerical scale factors for UTM

The UTM zone has greatest width on the equator where x ≈ 334km and the scale factor at
the point (E=833979 N=0) is just under 1.001. Comparing this with the scale factor 0.9996
at the origin indicates a scale variation of about 0.15% over the width of the projection. The
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scale factor at the upper right corner of the projection (E=534995, N=9329005) is 0.999615
and on the equator at (E=534995, N=0) it is 0.9996152: the variation with latitude along a
grid line is almost zero. The variation along the meridian is about 0.15%.

To draw the isoscale lines we have taken four values of N and calculated y and m from
equation 8.3 and inverted this to obtain the footpoint latitude by the methods of Section 5.9.
The coefficients K2 are then calculated from 8.13 so that x and E−E0 follow from 8.15 with
k = 1 and then k = 1.0004. The results are shown in the following table.

N footpoint k=0.9996 k=1.0 k=1.0004

9000000 81◦.05846848 0 180946 255887

6000000 54◦.14694587 0 180556 255336

3000000 27◦.12209299 0 180010 254564

0 0◦.00000000 0 179759 254208

UTM: value of |E−E0| at which k=0.9996, 1, 1.0004

Table 8.1

From the fourth column we see that the eastings on the k = 1 isoscale increase by just over
1km over in a range of 9000km from the equator to just over 80◦N. The deviation of the
k = 1.004 isoscale is still under 2km. Thus the isoscale lines are almost parallel to the
central meridian but curve outwards a little as they move from the equator..

Numerical scale factors for NGGB

For NGGB the greatest value of scale are encountered on the coast of East Anglia coast
and the Outer Hebrides where |x| reaches 300km and k≈1.0007. However, the bulk of the
NGGB grid is within approximately 255km of the central meridian where |k−1|<0.0004.
North-south variation is negligible over the NGGB. Note that a typical map 1:50000 sheet
corresponds to a small section of the grid. My ‘local’ sheet is bounded by E=316km and
E=356km and is close to the central meridian on which E=400km, the scale varies from
k=0.999686 on the west to k=0.999624 on the east. The isoscale lines of NGGB are found
in exactly the same way as for UTM. The curvature is negligible, giving a deviation of only
212m over the full northings extent of 1200km.

N footpoint k=0.9996 k=1.0 k=1.0004

1200000 60◦.68382350 0 180369 255275

800000 57◦.09116995 0 180302 255180

400000 53◦.49645197 0 180231 255080

0 49◦.89956809 0 180157 254976

NGGB: value of |E−E0| at which k=0.9996, 1, 1.0004

Table 8.2
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8.6 Convergence in the TME projection

When we discussed convergence in Section 3.6 we observed that on any particular meridian
(on the TMS projection) the convergence, defined as the angle between grid north and true
north (the tangent to the meridian), must increase from zero at the equator to λ at the pole.
The same must be true for TME although we require only values up to the northerly limit of
UTM or NGGB. The following table shows the convergence for these two projections for
several latitude values—on a bounding meridian for UTM (at λ0 + 3◦) and on the extreme
western meridian for NGGB at 7◦W=λ0−5◦ (in square NF)..

Convergence along a projected meridian

UTM at λ0 +3◦ NGGB at λ0−5◦

84◦N 2◦59′ 1′′W 60◦N 4◦19′ 58′′E

80◦N 2◦57′ 16′′W 58◦N 4◦14′ 36′′E

60◦N 2◦35′ 55′′W 56◦N 4◦ 8′ 55′′E

40◦N 1◦55′ 46′′W 54◦N 4◦ 2′ 55′′E

20◦N 1◦ 1′ 37′′W 52◦N 3◦56′ 38′′E

0◦N 0◦ 50◦N 3◦50′ 3′′E

For UTM the values of convergence approach the limiting value of 3◦ which is attained
at the pole. For NGGB the specified meridian is 5◦ west of the central meridian and the
convergence clearly approaches this value at the northern extremity of the grid.

The convergence varies only slightly over any one of the NGGB 1:50000 map sheets.
For example exact calculations give the convergence at the corners of the Edinburgh sheet
bounded by E=316km, E=356km, N=650km and N=690km as

Convergence on the boundary of Edinburgh sheet

E N γ γ E N

NW 316 690 1◦7′ 14.94′′E 35′ 13.82′′E 356 690 NE

SW 316 650 1◦6′ 20.85′′E 34′ 45.48′′E 356 650 SE

Note that the variation of convergence from top to bottom is much less than the variation
from east to west. Similar figures are given at the corners of every map in the OSGB series:
the values at other points of the sheet may be approximated by linear interpolation.

It is important to observe that convergence values are not vanishingly small and they
must be taken into account in relating an azimuth (α) to a grid bearing (β ) by the relation
α = β + γ discussed in Section 3.5. This correction is important in high accuracy applica-
tions.
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8.7 The accuracy of the TME transformations

One obvious test of the accuracy of the TME transformations is to start from given geo-
graphical coordinates (φ ,λ ), transform to projection coordinates with the direct Redfearn
series (7.86, 7.87) and then reverse the transformation with the inverse series (7.88, 7.90)
We should then be back where we started. Before doing so we must decide on our stan-
dard of accuracy. We shall work to within 1mm in the projection coordinates and to within
0.0001′′ in geographical coordinates. These accuracies are approximately equivalent, for
we see from Table (2.1) that 0.0001′′ is equivalent to 3mm along the meridian and less
than 2mm along a parallel for locations within the region of the NGGB (at latitudes from
50◦N–60◦N). To cope with rounding errors we compute to two extra places of decimals.
These tests are purely to assess the mathematical consistency of our transformations for, in
practice, no survey claims accuracies better than 10cm. The following example shows that
this first test is satisfied with flying colours. Note that we use eastings and nothings rather
than x and y, the projection coordinates. For NGGB they are related by (8.6, 8.7) and the
footpoint is to be calculated from (8.8).

Lat Lon E N
Redfearn–direct 52◦39′ 27.2531′′ 1◦43′ 4.5177′′ 651409.903 313177.270

E N Lat Lon
Redfearn-Inverse 651409.903 313177.270 52◦39′ 27.2531′′ 1◦43′ 4.5177′′

Another test is to assess the outcome of small changes in the inputs to the direct and
inverse series. Sticking to the same coordinates as above we perturb the geographical coor-
dinates by 0.0001′′ in latitude, longitude separately and together: for the inverse we perturb
the projection coordinates by 0.001mm. The results are shown below.

Lat Lon E N
NGGB-direct 52◦39′ 27.2531′′ 1◦43′ 4.5177′′ 651409.903 313177.270
Lat + 0.0001′′ 52◦39′ 27.2532′′ 1◦43′ 4.5177′′ 651409.903 313177.273
Lon + 0.0001′′ 52◦39′ 27.2531′′ 1◦43′ 4.5178′′ 651409.905 313177.270
Both together 52◦39′ 27.2532′′ 1◦43′ 4.5178′′ 651409.905 313177.274

E N Lat Lon
NGGB-Inverse 651409.903 313177.270 52◦39′ 27.2531′′ 1◦43′ 4.5177′′

E + 1mm 651409.904 313177.270 52◦39′ 27.2531′′ 1◦43′ 4.5178′′

N + 1mm 651409.903 313177.271 52◦39′ 27.2531′′ 1◦43′ 4.5177′′

Both together 651409.904 313177.271 52◦39′ 27.2531′′ 1◦43′ 4.5178′′

Thus we see that 0.0001′′ changes induce a maximum change on the projection of no more
than 4mm: for the inverse transformation 1mm changes in the projection coordinates change
the geographical coordinates by no more than 0.0001′′. This applies to a typical point on
the mainland but the errors in the Hebrides are more appreciable.
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When Redfearn (1948) published his series he was ‘simply’ extending the series that
had been published earlier by Lee (1945) who had discarded terms smaller that λ 4e2, λ 5e2,
(x/a)4e2 and (x/a)5e2 in the series for x, y, φ and λ respectively. Redfearn observed that
the coefficients in Lee’s series were increasing rapidly, particularly at larger latitudes where
t and t1 are not small, and consequently it seemed possible that some omitted terms might
actually be larger than the smallest ones retained. This proved to be the case. Redfearn’s
analysis to higher order makes clear which terms can be safely omitted, as is in OSGB
(1999), Thomas (1952) and Snyder (1987) To investigate the size of the terms we again
introduce the parameter η2 defined in equation (8.12). Using (8.6–8.8) the equations of
Section 7.8 become

E(λ ,φ) = E0+ k0ν

[
λ̃ +

λ̃ 3

3!
W3 +

λ̃ 5

5!
W5 +

λ̃ 7

7!
W7

]
, λ̃ = (λ −λ0)c (8.16)

N(λ ,φ) = N0+ k0

[
m(φ)−m(φ0)+

λ̃ 2νt
2

+
λ̃ 4νt

4!
W4 +

λ̃ 6νt
6!

W6 +
λ̃ 8νt

8!
W8

]
, (8.17)

λ (E,N) =
x̂
c1
− x̂3

3!c1
V3−

x̂5

5!c1
V5−

x̂7

7!c1
V7, m(φ1) =

N−N0
k0

+m(φ0) (8.18)

φ(E,N) = φ1−
x̂2β1t1

2
− x̂4β1t1

4!
U4−

x̂6β1t1
6!

U6−
x̂8β1t1

8!
U8, x̂ =

E−E0
k0ν1

(8.19)

with coefficients

W3 = 1− t2 +η
2

W4 = 5− t2 +9η
2 +4η

4

W5 = 5−18t2 + t4 +η
2(14−58t2) +η

4(13−64t2)+η
6(4−24t2)

W6 = 61−58t2 + t4 +η
2(270−330t2)+η

4(445−680t2)

+η
6(324−600t2)+η

8(88−192t2)

W7 = 61−479t2 +179t4− t6

W8 = 1385−3111t2 +543t4− t6 (8.20)

V3 = 1+2t2
1 +η

2
1

V5 =−5−28t2
1 −24t4

1 −η
2
1 (6+8t2

1)+η
4
1 (3−4t2

1)+η
6
1 (4−24t2

1)

V7 = 61+662t2
1 +1320t4

1 +720t6
1 (8.21)

U4 =−5−3t2
1 −η

2
1 (1−9t2

1) +4η
4
1

U6 = 61+90t2
1 +45t4

1 +η
2
1 (46−252t2

1 −90t4
1)+η

4
1 (−3−66t2

1 +225t4
1)

+η
6
1 (100+84t2

1)+η
8
1 (88−192t2

1)

U8 = −1385−3633t2
1 −4095t4

1 −1575t6
1 (8.22)

The significance of the vertical rules in the rewritten coefficients is discussed overleaf.
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Consider a worst case example: φ = 58◦N and λ = 7◦W, equivalent to projection co-
ordinates E =104647.323m and N =912106.244m. This point has about the greatest value
of λ −λ0 that we can get in the NGGB and moreover it is about as far north as we can get
so the value of tanφ in the coefficients is not small (t=1.6). In the tables shown below all
the sub-terms have been displayed according to their power of η2, essentially e2, and their
power of either λ̃ or x̂ for the direct and inverse series respectively. Observe that all terms
to the right of the rules are smaller than our limits (1mm or 0.0001′′) and may be neglected
in the series.

In: φ = 58◦ λ =−7◦ Out: E =104647.323m
η0 η2 η4 η6 η8

λ̃ 1 104482.705

λ̃ 3 164.425 -0.199

λ̃ 5 0.389 0.003 6.0E-06 4.3E-09

λ̃ 7 4.9E-06

In: φ = 58◦ λ =−7◦ Out: N =912106.244m
η0 η2 η4 η6 η8

λ̃ 0 901166.420

λ̃ 2 10935.050

λ̃ 4 4.753 0.032 2.8E-05

λ̃ 6 -0.011 -1.5E-04 -6.4E-07 -1.1E-09 -7.1E-13

λ̃ 8 -1.6E-05

In: E =104647.323, N =912106.244 Out: φ =58◦ 0′ 0.0000′′

η0
1 η2

1 η4
1 η6

1 η8
1

x̂0 58◦ 5′ 53.7728′′

x̂2 −5′ 54.5718′′

x̂4 0.8042′′ − 0.0025′′ -8.9E-07′′

x̂6 − 0.0027′′ 1.0E-05′′ -2.1E-08′′ -9.4E-12′′ 2.3E-14′′

x̂8 1.1E-05′′

In: E =104647.323, N =912106.244 Out: λ =−7◦ 0′ 0.0000′′

η0
1 η2

1 η4
1 η6

1 η8
1

x̂1 −7◦ 0′ 39.4213′′

x̂3 39.5711′′ 0.0120′′

x̂5 − 0.1626′′ -3.4E-05′′ -1.8E-08′′ -2.6E-10′′

x̂7 0.0008′′

Table 8.3
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8.8 The truncated TME series

Dropping the small terms to the right of the vertical rules in equations (8.16–8.19) gives the
truncated series used by OSGB (1999)—see next section. A slightly smaller set of terms is
omitted in the series in Snyder (1987) because UTM extends to much higher latitudes than
NGGB.

E(φ ,λ ) = E0+ k0ν

[
λ̃ +

λ̃ 3

3!
W T

3 +
λ̃ 5

5!
W T

5

]
, (8.23)

N(φ ,λ ) = N0+ k0 [m(φ)−m(φ0)]+ k0

[
λ̃ 2νt

2
+

λ̃ 4νt
4!

W T
4 +

λ̃ 6νt
6!

W T
6

]
, (8.24)

λ (E,N) =
x̂
c1
− x̂3

3!c1
V T

3 −
x̂5

5!c1
V T

5 −
x̂7

7!c1
V

T
7 , (8.25)

φ(E,N) = φ1−
x̂2β1t1

2
− x̂4β1t1

4!
UT

4 −
x̂6β1t1

6!
UT

6 , (8.26)

where

λ̃ = (λ −λ0)c, x̂ =
E−E0

k0ν1
, m(φ1) =

N−N0
k0

+m(φ0), (8.27)

and, as usual, c=cosφ , t= tanφ , β=ν(φ)/ρ(φ) from (5.53) and the ‘1’ subscript denotes
a function evaluated at the footpoint latitude.

The truncated coefficients follow from equations (8.20–8.22)

W T
3 = 1− t2 +η

2

W T
4 = 5− t2 +9η

2

W T
5 = 5−18t2 + t4 +η

2(14−58t2)

W T
6 = 61−58t2 + t4 (8.28)

V T
3 = 1+2t2

1 +η
2
1

V T
5 =−5−28t2

1 −24t4
1

V
T

7 = 61+662t2
1 +1320t4

1 +720t6
1 (8.29)

UT
4 =−5−3t2

1 −η
2
1 (1−9t2

1)

UT
6 = 61+90t2

1 +45t4
1 (8.30)

where

η
2 = β −1 =

ν

ρ
−1 =

e2 cos2φ

1− e2 = e′2 cos2
φ . (8.31)
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8.9 The OSGB series

The published form of the series used by the OSGB uses a different notation for the trun-
cated series of the previous section. First use equations (5.76, 5.77) to set

M = k0 [m(φ)−m(φ0)] (8.32)

= k0b
[(

1+n+
5
4

n2+
5
4

n3
)
(φ−φ0)−

(
3n+3n2+

21
8

n3
)

sin(φ−φ0)cos(φ+φ0)

+

(
15
8

n2+
15
8

n3
)

sin2(φ−φ0)cos2(φ+φ0)−
(

35
24

n3
)

sin3(φ−φ0)cos3(φ+φ0)

]
where n is defined in equation (5.5) as (a−b)/(a+b).

Equations (8.24), (8.23), (8.26) and (8.25) may be written as

N = I+ II(λ −λ0)
2 + III(λ −λ0)

4 + IIIA(λ −λ0)
6 (8.33)

E = E0+ IV(λ −λ0)+V(λ −λ0)
3 +VI(λ −λ0)

5, (8.34)

φ = φ1−VII(E−E0)2 +VIII(E−E0)4− IX(E−E0)6, (8.35)

λ = λ0 +X(E−E0)−XI(E−E0)3 +XII(E−E0)5−XIIA(E−E0)7, (8.36)

where φ1 must be calculated from equation

m(φ1) =
y
k0

=
N−N0

k0
+m(φ0) (8.37)

by the methods of Section 5.9.

If we introduce ν̃ = k0ν and ρ̃ = k0ρ the coefficients I–XIIA may be written in terms of the
truncated coefficients (8.28–8.30) as

I = M+N0 II =
ν̃sc
2

III =
ν̃sc3W T

4
4!

IIIA =
ν̃sc5W T

6
6!

IV = ν̃c V =
ν̃c3W T

3
3!

VI =
ν̃c5W T

5
5!

VII =
t1

2ρ̃1ν̃1
VIII =

−t1UT
4

4!ρ̃1ν̃3
1

IX =
t1UT

6

6!ρ̃1ν̃5
1

X =
1

ν̃1c1
XI =

V T
3

3!ν̃3
1 c1

XII =
−V T

5

5!ν̃5
1 c1

XIIA =
V T

7

7!ν̃7
1 c1

and, as usual, c=cosφ , t= tanφ , β=ν(φ)/ρ(φ) from (5.53) and the ‘1’ subscript denotes
a function evaluated at the footpoint latitude. The OSGB publication exhibits the above
formulae without the tildes on ν and ρ because the definitions of ν and ρ in that publication
already absorb a factor of k0.
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8.10 Concluding remarks

At the end of the day, after much hard graft, we have thrown away almost all of the higher
order terms except for the seventh order term in x/a in the inverse series for λ . Clearly
terms of order O

(
e2(x/a)7

)
would also be negligible so at last we have justified the use of

the spherical approximation in calculating the higher order terms. Note that we could not
have assessed the size of the higher order terms without working them out!

One can use the Redfearn series as they stand for they are simple to encode on any
computer and they take very little extra computation time. Remember, however, that when
these series were first developed it was imperative to simplify the working as much as
possible for hand(-machine) calculations. Lee would no doubt have had this in mind when
he dropped the sixth order terms in his calculations. To be exact, of the required terms he
dropped the term in λ 6 in the direct series for y, the term in (x/a)6 in the inverse series for
φ and the term in (x/a)7 in the inverse series for λ ; at the same time he included the term
in (x/a)5e2 in the inverse series for λ although we now see that it is negligible.

Nowadays no ’hard graft’ is required for the series can be readily implemented on a
computer algebra program such as maxima. Such programs are exhibited in Section H: they
can easily be extended to higher orders.

The series developed here are simply extensions of the work of Krüger (1912) and
Gauss. However, Gauss developed another form of the TM projection which was clarified
and actually used by Schreiber in the survey of Prussia. This Gauss-Screiber projection is
derived by the transformation of the ellipsoid to the conformal sphere (Sections 5.9,5.10
followed by the TMS from conformal sphere to the plane. This double projection does not
have a uniform scale on the central meridian but Kruüger showed that this could be achieved
by a further conformal transformation which is based on series linking the conformal and
rectifying latitudes. This form of the TME is much more accurate than the Readfearn series.
An implementation is described in Karney (2011) and the computer code code is available
at Karney (2010). Such implementations can be used for accurate projections to much wider
domains.

Both the Redfearn method and this second method based on Gauss-Screiber involve
truncated series. They can be extended to any finite order but there are no general series
which permit the attainment of arbitrary precision. This is available by using an exact
version of the TME developed by E. H. Thompson and communicated to Lee (1976). This
solution is exact in the sense that it can be computed to arbitrary precision and it provides
a yard stick by which other methods can be assessed. Such comparisons permit one to say
that the Gauss-Schreiber method is more accurate than the Redfearn series. One remarkable
property of the solution is that it is a finite projection which does not tend to infinity as the
longitude separation from the central meridian increases. This method is implemented by
Dozier (1980), Stuifbergen (2009) and Karney (2011).
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AppendixA
Curvature in 2 and 3 dimensions

A.1 Planar curves

A straight line has zero curvature. The curvature, κ , of a general curve in the plane is
defined as the rate of change of the direction of its tangent with respect to the distance
travelled along the line:

κ =
dθ

ds
. (A.1)

If we are given the equation of the curve as y = f (x) with respect to Cartesian axes then it
is natural to choose the x-axis as the reference for the direction of the tangent.

The geometry of the small inset in the figure shows
that

tanθ =
dy
dx

= y′(x), cosθ =
dx
ds

(A.2)

Differentiating the first of these statements by s and
using the second gives

sec2
θ

dθ

ds
=

d[y′(x)]
ds

= y′′(x)
dx
ds

= y′′(x)cosθ . (A.3)
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Figure A.1

Now secθ =±
√

1+ tan2θ =±
√

1+ y′2 so we obtain dθ/ds and

κ = ± y′′(x)
[1+ y′2]3/2 . DASH≡ d

dx
(A.4)

The choice of sign is a matter for convention in every case. We shall illustrate this point
immediately. The unsigned curvature is given by taking the modulus.
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The curvature of a circle

For a general circle of radius a at the origin we have x2 + y2 = a2 so that on the two semi-
circles y> 0 and y< 0,

y(x) =±
√

a2− x2, y′(x) =
∓x√

a2− x2
, y′′(x) =

∓a2

(a2− x2)3/2 . (A.5)

Substituting these values in equation (A.4) we see that the curvature of the upper semicircle
is κ = ±(−1/a) whilst for the lower semicircle κ = ±(1/a). Now it is conventional to
define the curvature of a circle to be positive so we must choose the negative sign in the
definition for the case of the upper semicircle and the positive sign for the lower; with these
choices of sign we have a constant curvature κ = 1/a. Therefore the curvature of a circle is
the inverse of the radius and vice-versa.

The osculating circle and the radius of curvature

The particular circle which touches the curve at P (Figure A.1) and also shares the same
curvature at that point is called the ‘osculating circle’ (osculating=kissing) or the ‘circle of
curvature’. The radius of this circle defines R, the radius of curvature of the curve at that
point. Clearly

R =
1
κ
. (A.6)

Curves in parametric form

The previous results related to a curve in two dimensions described by a single function y(x)
in Cartesian coordinates. We now consider the situation where these Cartesian coordinates
are parameterised by two functions of u; that is the position of a point on the curve is
written as r(u) =

(
x(u), y(u)

)
. We shall investigate three types of parameterisation: (1) the

parameter is assumed to be perfectly general, not necessarily the distance along the path;
(2) the parameter is taken as the arc length s; (3) the parameter is taken as the angle between
the tangent and the x-axis.

Case 1: Arbitrary parameterisation: x(u), y(u). Set DOT≡ d
du

y′(x) =
dy
dx

=
ẏ
ẋ
,

y′′(x) =
d

du

( ẏ
ẋ

) du
dx

=
ẋÿ− ẏẍ

ẋ3

1
R

= κ =
ẋÿ− ẏẍ
[ẋ2 + ẏ2]3/2 DOT≡ d

du
. (A.7)
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Case 2: Special parameterisation: u→ s. Given x(s), y(s). Set DASH≡ d
ds

Since s is the arc length we have dx2 +dy2 = ds2 and consequently x′2 + y′2 = 1.

Therefore (A.7) becomes

1
R

= κ = x′y′′− y′x′′ DASH≡ d
ds

(A.8)

Case 3: Special parameterisation: u→ θ . Given x(θ), y(θ). Set DOT≡ d
dθ

Since θ is the angle between the tangent and the x-axis we have tanθ =
dy
dx = ẏ/ẋ

Differentiating with respect to θ gives sec2
θ =

ẋÿ− ẏẍ
ẋ2 .

But we also have sec2
θ = 1+ tan2

θ =
ẋ2 + ẏ2

ẋ2

Therefore we must have ẋÿ− ẍẏ = ẋ2 + ẏ2 so that (A.7) becomes

1
R

= κ =
1

[ẋ2 + ẏ2]1/2 DOT≡ d
dθ

(A.9)

Note that this result follows directly from equation (A.1) since 1
κ dθ = ds = [dx2 +dy2]1/2.

Curvature of the ellipse

The Cartesian equation of an ellipse is

x2

a2 +
y2

b2 = 1, (A.10)

where the semi-axes are related to the eccentricity by b =
a
√

1− e2. Now the ellipse may be obtained by scaling the
auxiliary circle by a factor of b/a in the y direction. Since
an arbitrary point P′ on the circle is (acosU, asinU) the
corresponding point on the ellipse is P(acosU, bsinU).
We call U the ‘parametric’ or ‘reduced’ latitude in cartog-
raphy and the ‘eccentric anomaly’ in astronomy.)
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Figure A.2

We calculate the curvature from equation (A.7) setting:

x = acosU, y = bsinU,
ẋ =−asinU, ẏ = bcosU,
ẍ =−acosU, ÿ =−bsinU, (A.11)

giving

κ =
+ab

[a2− (a2−b2)cos2U ]3/2 =
1
a

√
1− e2

[1− e2 cos2U ]3/2 . (A.12)
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A.2 Curves in three dimensions

First consider two neighbouring points, P(s) and Q(s+δ s), on a curve parameterised by its
arc length s (Figure A.3a). The chord length between these points is given by δ s2 = δr ·δr.
The tangent vector at P is the limit of δr/δ s and therefore has the properties

t = r′, t · t = 1 t · t′ = 0, (A.13)

where the last follows by differentiation of the second.
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Figure A.3

Consider the tangents at neighbouring points (Figure A.3b); t(s) and t(s+δ s) = t+δ t are
compared in the third figure by bringing them together at some point B. Tangent vectors are
unit vectors so that |t| = |t+ δ t| = 1; therefore in the limit of δ s→ 0 we see that δ t is in
the direction of n, a unit vector normal to t and in the ‘osculating plane’ defined by the two
vectors t(s) and t(s+δ s). Furthermore, if the angle between the unit tangent vectors is δθ

then as δ s→ 0 we must have |δ t|= δθ . Consequently

t′ = lim
δ s→0

δ t
δ s

=
dθ

ds
n = κn. (A.14)

The vector n is called the principal normal to the curve and the curvature κ , is defined as
for planar curves. We can invert this relation and write

n =
1
κ

t′ =
1
κ

r′′. (A.15)

Note that n is defined to be a unit vector; on the other hand t′ is not a unit vector, its length
is equal to the curvature κ . Since t · t′ = 0 we must have n · t = 0.

Now introduce the unit ‘binormal’ vector b, defined so that it
forms a right-handed orthogonal triad with t and n. Therefore

b = t×n, (A.16)

t ·n = 0 n ·b = 0 b · t = 0,

t×n = b, n×b = t, b× t = n. (A.17)
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Torsion and the Frenet–Serret formulae

Since b is a unit vector, differentiation gives b ·b′ = 0. Furthermore if we differentiate the
relation t ·b = 0 we get

t′ ·b+ t ·b′ = 0. (A.18)

Now since t′ = κn the first of these terms must vanish so we must have t ·b′ = 0. Conse-
quently b′ is perpendicular to both t and b and it is therefore a vector in the direction of n.
The vector b′ is not a unit vector and its magnitude is defined to be τ , the ‘torsion’ of the
curve. We choose to set

b′ =−τn. (A.19)

The torsion of the curve is a measure of the rate of rotation of the vectors b, and hence n,
about the tangent vector as s increases. The negative sign associates a ‘right-handed’ rule
as part of the definition.

We have expressions for the derivatives of t and b in equations (A.15) and (A.19). We
now evaluate the derivative of n from b× t:

n′ = b′× t+b× t′ =−τn× t+b× (κn) = τb−κt. (A.20)

This equation together with the derivatives of t and b constitute the set of Frenet-Serret
relations:

t′ = κn,
n′ = τb−κt,
b′ =−τn. (A.21)

These equations show that the form of a curve in three dimensions is essentially determined
by the two functions κ(s) and τ(s) and an initial orthonormal triad.

A.3 Curvature of surfaces

At any point on a surface we can define the curvature of a line on the surface passing
through that point. Rather than build up a large part of differential geometry we shall give
elementary proofs of two important results that we need.

First consider those curves which are defined by the intersection of a plane with the
surface. The most important case is a plane which contains the normal N at the point P; such
a plane defines a ‘normal section’ of the surface. We shall consider all the normal sections at
a given point and investigate the curvature at P of their intersections. The principal result is
that the maximum and minimum curvatures arise on two normal sections at right-angles to
each other; these are the ‘principal’ curvatures which we will denote by κ1 and κ2. Euler’s
formula gives the curvature on any other normal section in terms of the principal curvatures.

The other main result that we need is Meusnier’s theorem. This relates the curvature
on a normal section to the curvature of the sections made by planes oblique to the chosen
normal plane, i.e. sharing the same tangent at P. It is convenient to prove this theorem first.
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A.4 Meusnier’s theorem

Without loss of generality we choose axes with the origin O at an arbitrary point on a surface
and such that the xy-plane is tangential at the point. Consider the family of planes which
contain the tangent directed along the x-axis. Each plane intersects the the surface in a plane
curve; let g(x) be the curve on the normal plane and w(x) on an oblique plane inclined at
an angle φ to the normal plane. If κ, R denote the curvature and radius of curvature at the
origin of g(x) and w(x) on the normal and oblique planes repectively, then

κoblique = secφ κnormal, Roblique = cosφ Rnormal. (A.22)

The choice of coordinates implies that z = f (x,y), the
‘height’ of the surface above the xy-plane, is such that
f (0,0) = 0 and has partial derivatives fx(0,0)=0 and
fy(0,0)=0. The Taylor series at the origin is then

z = f (x,y) =
1
2

Ax2 +Bxy+
1
2

Cy2 + · · · , (A.23)

with A = fxx(0,0), B = fxy(0,0) and C = fyy(0,0).
The intersection of the xz-plane (y = 0) and the surface is
the curve g(x) which, near P, is given by

g(x) = f (x,0) =
1
2

Ax2 +O(x3). (A.24)

The curvature of g(x) at P follows from (A.4)

κnormal=
g′′(x)

[1+(g′)2]3/2

∣∣∣∣
x=0

=A. (A.25)

On the oblique plane at P we have z = f (x,y) with
z = wcosφ and y = wsinφ . Therefore

wcosφ= f (x,wsinφ)=
Ax2

2
+Bxwsinφ+

Cw2

2
sin2

φ

It is clear from this equation that for small x and arbitrary φ

we must have w(x) = O(x2). (For suppose on the contrary
that w(x) = O(x), then the LHS of the previous equation
would be O(x) and the RHS would be O(x2)).

w(x) = secφ

(1
2

Ax2 +O(x3)
)
. (A.26)
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Figure A.5

Equations (A.26) and (A.24) give Meusnier’s theorem

κoblique =
w′′

[1+(w′)2]3/2

∣∣∣∣
x=0

= Asecφ = secφ κnormal. (A.27)
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A.5 Curvature of normal sections

We now consider the set of planes which have as axis
the normal to the surface at a given point. The intersec-
tions of these planes with the surface define the ‘normal
sections’ at that point. Once again we take the given
point as the origin of our coordinate systems and define
the tangent plane at the origin to be the xy-plane. There-
fore the equation of the surface may be taken as in the
last section:

z = f (x,y) =
1
2

Ax2 +Bxy+
1
2

Cy2 + · · · . (A.28)

Now one of the planes in the normal set is the xz-plane.
This plane was also the first we considered in the proof
of Meusnier’s theorem. It intersects the surface in the
curve g(x) which, in the neighbourhood of the origin, is
given by

g(x) = f (x,0) =
1
2

Ax2 +O(x3), (A.29)

and, from equation (A.25), we know that its curvature
at the origin is equal to A. Similarly the curvature of the
section by the yz-plane is equal to C.
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Principal Axes

We exploit the freedom to choose any pair of orthogonal lines as axes in the xy-plane. If
new x′y′-axes are rotated from the original by an angle α then we must set

x = cosα x′− sinα y′, (A.30)

y = sinα x′+ cosα y′. (A.31)

Abbreviate c = cosα and s = sinα and set x = cx′− sy′ and y = sx′+ cy′ in the equation of
the surface (A.28). In terms of these new coordinates

z = h(x′,y′) =
1
2

A(cx′−sy′)2 +B(cx′−sy′)(sx′+cy′)+
1
2

C(sx′+cy′)2 + · · · . (A.32)

Now the coefficient of the x′y′ cross term is equal to [−Asc+B(c2− s2)+Csc] and this will
vanish if (A−C)sin2α = 2Bcos2α or tan2α = 2B/(A−C). There is always a solution for
α and therefore we can always rotate axes so that the equation of the surface may be taken
without a cross term. This defines the principal axes in the tangent plane at the given point.
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Curvature in an arbitrary normal plane: Euler’s formula

We now re-interpret Figure A.6 by assuming that the principal axes have been found and
they have been chosen as the x-axis and y-axis. Therefore the equation of the surface with
respect to the principal axes in the tangent plane is of the form

z = f (x,y) =
1
2

κ1x2 +
1
2

κ2y2 + · · · , (A.33)

where κ1, κ2 could be related to A, B, C. On the normal plane which includes the x principal
axis we have y = 0 and z = (1/2)κ1x2 so that the curvature of the section is κ1. Similarly
κ2 is the curvature of the normal section which includes the y principal axis. κ1 and κ2 are
called the principal curvatures of the surface at P.

We shall now find the curvature of the section made by a normal plane which makes
an arbitrary angle α to one of the principal axes, say the x-axis. Once again we rotate
axes, away from the principal axes, so that the new x′ axis lies in the chosen plane and y′ is
orthogonal to it. This is achieved by exactly the same rotation as before, namely x= cx′−sy′

and y = sx′+ cy′. The equation of the surface now takes the form:

z = h(x′,y′) =
1
2

κ1(cx′− sy′)2 +
1
2

κ2(sx′+ cy′)2 + · · · . (A.34)

Now the chosen plane at the angle α is the plane with y′ = 0 in the new coordinates so its
section with the surface is given by

p(x′) = h(x′,0) =
1
2

κ1(cx′)2 +
1
2

κ2(sx′)2 + · · ·

=
1
2

x′2(κ1 cos2
α +κ2 sin2

α)+ · · · . (A.35)

We now evaluate its curvature at the origin using equation (A.4), giving:

EULER’S FORMULA κ(α) = κ1 cos2 α +κ2 sin2
α (A.36)

for the curvature of the normal section made by a plane making an angle α with one of the
principal normal planes.

Without loss of generality let us take κ1 > κ2, then we have

κ1−κ(α) = (κ1−κ2)sin2
α ≥ 0, (A.37)

κ(α)−κ2 = (κ1−κ2)cos2
α ≥ 0. (A.38)

κ1 ≥ κ(α)≥ κ2. (A.39)

Thus we have proved that the curvatures of normal sections at a point are such that the
minimum and maximum values, the principal curvatures, are associated with orthogonal
planes and the curvature on any other plane is given by the Euler formula. Note that we have
not provided any way of calculating the curvature for an arbitrary surface for in general we
do not have equations for the surface in the form of (A.28). The general study requires the
machinery of differential geometry (see Bibliography) but for surfaces of revolution such
as the ellipsoid we shall find that this not required.
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Two definitions of average curvature

The mean curvature at a point on a surface is H =
1
2
(κ1 +κ2). (A.40)

The Gaussian curvature at a point on a surface is G =
√

κ1κ2. (A.41)

These definitions are useful in various ways—for example, when we seek to approximate
the surface of small part of the ellipsoid by a sphere.
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Blank page. A contradiction.
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AppendixB
Lagrange expansions

B.1 Introduction

We wish to investigate the inversion of a finite series such as

w = z+a2z2 +a3z3 +a4z4 +a5z5 · · · (B.1)

where both z and w are assumed to be small, less than 1, whilst the coefficients are of
of order unity. The series we shall meet in the cartographic applications will typically be
Taylor series truncated after a few terms. Now since zn � z for z < 1 and n > 1 we must
have z≈ w and we might expect it to be represented by a series of the form

z = b1w+b2w2 +b3w3 +b4w4 +b5w5 + · · · . (B.2)

One way of finding the coefficients is to substitute the series for z into every term on the
right hand side of (B.1) and compare coefficients of wn on both sides. This is demonstrated
explicitly in the next section. Fortunately a more general method exists, namely the La-
grange expansions defined in Section B.3. This is essential for the inversion of the eighth
order series that we shall encounter.

A second category of problem is illustrated by a series of the form

w = z+ c2 sin2z+ c4 sin4z+ c6 sin6z+ · · · , (B.3)

where we might have z and w as O(1) whilst the coefficients cn are small. The method of
Lagrange expansions will show that there is an inverse given by

z = w+d2 sin2w+d4 sin4w+d6 sin6w+ · · · . (B.4)
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B.2 Direct inversion of power series

The power series may be solved simply by back substitution, i.e. we substitute z from (B.2)
into the terms on the right hand side of (B.1) and compare coefficients of w. If we retain
only terms up to O(w4) we have

w = (b1w+b2w2+b3w3+b4w4)+a2w2(b1+b2w+b3w2+ · · ·)2

+a3w3(b1+b2w+ · · ·)3 +a4w4(b1+ · · ·)4,

= (b1w+b2w2+b3w3+b4w4)+a2w2(b2
1+2b1b2w+b2

2w2+2b1b3w2+ · · ·)
+a3w3(b3

1+3b2
1b2w+ · · ·)+a4w4b4

1 +O(w5).

Comparing coefficients gives

w1 : 1 = b1,

w2 : 0 = b2 +a2b2
1,

w3 : 0 = b3 +2a2b1b2 +a3b3
1,

w4 : 0 = b4 +a2(b2
2 +2b1b3)+3a3b2

1b2 +a4b4
1.

These equations are solved in turn to give

b1 = 1, b2 =−a2, b3 =−a3 +2a2
2, b4 =−a4 +5a2a3−5a3

2. (B.5)

This method is straightforward but becomes progressively harder as we go up to O(z8)
terms. Moreover the method is inapplicable for the trigonometric series. Fortunately there
is a more general and elegant approach.

B.3 Lagrange’s theorem

The general form of the series (B.1, B.3) is

w = z+ f (z), (B.6)

with | f (z)| � |z| and w ≈ z. The theorem of Lagrange states that in a suitable domain the
solution of this equation is

z = w+∑
∞

k=1
(−1)k

k!

(
d
dw

)(k−1)

[ f (w)]k (B.7)

The proof of this theorem will be given in the last section of this appendix.
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B.4 Application to a fourth order polynomial

Consider the finite polynomial

w = z+a2z2 +a3z3 +a4z4, (B.8)

which is a case of equation (B.6) with

f (z) = a2z2 +a3z3 +a4z4.

We now apply the theorem with

f (w) = a2w2 +a3w3 +a4w4.

In evaluating the inverse we shall only retain terms up to w4 in the series for z (although the
Lagrange expansion is infinite). Therefore in evaluating the power [ f (w)]k we need retain
only those powers of w which give terms no higher than w4 after differentiating (k−1)
times. For example [ f (w)]3 has terms of order w6, w7, . . .w12 but only the first of these
terms contributes after differentiating 2 times. No terms of order w4 arise from [ f (w)]4 and
higher powers. Therefore we keep only

f (w) = a2w2 +a3w3 +a4w4,

[ f (w)]2 = w4(a2
2)+w5(2a2a3)+ · · · ,

[ f (w)]3 = w6(a3
2)+ · · · .

Calculate the derivatives

f (w) = a2w2 +a3w3 +a4w4,

1
2!

D[ f (w)]2 = 2w3(a2
2)+5w4(a2a3)+ · · · ,

1
3!

D2[ f (w)]3 = 5w4(a3
2)+ · · · .

Substitute in Lagrange’s expansion:

z = w− f (w)+
1
2!

D[ f (w)]2− 1
3!

D2[ f (w)]3 + · · · .

The final result is

z = w−w2 [a2]−w3 [a3−2a2
2
]
−w4 [a4−5a2a3 +5a3

2
]
−·· · . (B.9)

The coefficients are in agreement with equation (B.5).
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Modified fourth order polynomial

It will be convenient to consider a modified version of equation (B.8) with coefficients are
of the form an = bn/n!. In this case the above equations become

w = z+
b2

2!
z2 +

b3

3!
z3 +

b4

4!
z4, (B.10)

z = w− p2

2!
w2− p3

3!
w3− p4

4!
w4 + · · · (B.11)

where the p-coefficients are given by

p2 = b2, p3 = b3−3b2
2, p4 = b4−10b2b3 +15b3

2. (B.12)

Alternative notation

For the applications to cartography it is convenient to use the following notation for the
direct and inverse series:

z = ζ +
b2

2!
ζ

2 +
b3

3!
ζ

3 +
b4

4!
ζ

4, (B.13)

ζ = z− p2

2!
z2− p3

3!
z3− p4

4!
z4 + · · · (B.14)

B.5 Application to a trigonometric series

Consider equation (B.6), that is
w(z) = z+ f (z), (B.15)

with f (z) defined by the following finite trigonometric series:

f (z) = b2 sin2z+b4 sin4z+b6 sin6z+b8 sin8z, (B.16)

where the coefficients bn are small enough for the condition | f (z)| � z, w to be valid; note
that we are assuming that w and z are of order unity. For the applications we have in mind we
shall have |bn|= O(en) where e is the eccentricity of the ellipsoid. In deriving the inversion
we shall truncate the infinite Lagrange expansion at terms of order e8; thus we retain terms
proportional to b2, b4, b2

2, b6, b2b4, b3
2, b8,b2b6, b2

2b4, b2
4, b4

2 and drop higher powers.
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In the following steps we make use of several trigonometric identities from Appendix C.

f (w) = b2 sin2w+b4 sin4w+b6 sin6w+b8 sin8w,

[ f (w)]2 = b2
2 sin22w+2b2b4 sin2wsin4w+b2

4 sin24w+2b2b6 sin2wsin6w+ · · ·

=
1
2

b2
2(1− cos4w)+b2b4(cos2w− cos6w)

+
1
2

b2
4(1− cos8w)+b2b6(cos4w− cos8w)+ · · ·

[ f (w)]3 = b3
2 sin3 2w+3b2

2b4 sin2 2wsin4w+ · · ·

=
1
4

b3
2(3sin2w− sin6w)+

3
4

b2
2b4(2sin4w− sin8w)+ · · ·

[ f (w)]4 = b4
2 sin4 2w+ · · ·= 1

8
b4

2(3−4cos4w+ cos8w)+ · · · .

Calculate the derivatives
f (w) = b2 sin2w+b4 sin4w+b6 sin6w+b8 sin8w,

1
2!

D[ f (w)]2 = b2
2 sin4w+b2b4(−sin2w+3sin6w)

+2b2
4 sin8w+2b2b6(−sin4w+2sin8w)+ · · ·

1
3!

D2[ f (w)]3 =
1
2

b3
2(−sin2w+3sin6w)+4b2

2b4(−sin4w+2sin8w)+ · · ·

1
4!

D3[ f (w)]4 =
4
3

b4
2(−sin4w+2sin8w)+ · · · .

Finally, substituting into

z = w− f (w)+
1
2!

D[ f (w)]2− 1
3!

D2[ f (w)]3 +
1
4!

D3[ f (w)]4 + · · ·

and grouping terms according to the trigonometric functions gives

z = w+d2 sin2w+d4 sin4w+d6 sin6w+d8 sin8w+ · · · , (B.17)

where

d2 =−b2−b2b4 +
1
2

b3
2,

d4 =−b4 +b2
2−2b2b6 +4b2

2b4−
4
3

b4
2,

d6 =−b6 +3b2b4−
3
2

b3
2,

d8 =−b8 +2b2
4 +4b2b6−8b2

2b4 +
8
3

b4
2. (B.18)
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B.6 Application to an eighth order polynomial

We now invert a series of the form

w = z+a2z2 +a3z3 +a4z4 +a5z5 +a6z6 +a7z7 +a8z8. (B.19)

retaining only the terms up to w8 in the series for z. This problem is a trivial generalisation
of the derivation for the fourth order series developed in Section B.4, only the algebra is a
little more involved. We set f (w) = a2w2+a3w3 · · · in the Lagrange expansion and evaluate
the powers of [ f (w)]k; recall that we need retain only those powers of w which give terms
no higher than w8 after differentiating k−1 times.

f (w) = a2w2 +a3w3 +a4w4 +a5w5 +a6w6 +a7w7 +a8w8,

[ f (w)]2 = w4(a2
2)

+w5(2a2a3)

+w6(2a2a4 +a2
3)

+w7(2a2a5 +2a3a4)

+w8(2a2a6 +2a3a5 +a2
4)

+w9(2a2a7 +2a3a6 +2a4a5)+O(w10),

[ f (w)]3 = w6(a3
2)

+w7(3a2
2a3)

+w8(3a2
2a4 +3a2a2

3)

+w9(3a2
2a5 +6a2a3a4 +a3

3)

+w10(3a2
2a6 +6a2a3a5 +3a2a2

4 +3a2
3a4)+O(w11),

[ f (w)]4 = w8(a4
2)

+w9(4a3
2a3)

+w10(4a3
2a4 +6a2

2a2
3)

+w11(4a3
2a5 +12a2

2a3a4 +4a2a3
3)+O(w12),

[ f (w)]5 = w10(a5
2)

+w11(5a4
2a3)

+w12(5a4
2a4 +10a3

2a2
3)+O(w13),

[ f (w)]6 = w12(a6
2)

+w13(6a5
2a3)+O(w14),

[ f (w)]7 = w14(a7
2)+O(w15),

[ f (w)]8 = O(w16).
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Evaluate the derivatives, (writing D for d/dw):

f (w) = a2w2 +a3w3 +a4w4 +a5w5 +a6w6 +a7w7 +a8w8,

1
2!

D[ f (w)]2 =+2w3(a2
2)

+
5
2

w4(2a2a3)

+3w5(2a2a4 +a2
3)

+
7
2

w6(2a2a5 +2a3a4)

+4w7(2a2a6 +2a3a5 +a2
4)

+
9
2

w8(2a2a7 +2a3a6 +2a4a5)+O(w9),

1
3!

D2[ f (w)]3 =+5w4(a3
2)

+7w5(3a2
2a3)

+
28
3

w6(3a2
2a4 +3a2a2

3)

+12w7(3a2
2a5 +6a2a3a4 +a3

3)

+15w8(3a2
2a6 +6a2a3a5 +3a2a2

4 +3a2
3a4)+O(w9),

1
4!

D3[ f (w)]4 =+14w5(a4
2)

+21w6(4a3
2a3)

+30w7(4a3
2a4 +6a2

2a2
3)

+
165
4

w8(4a3
2a5 +12a2

2a3a4 +4a2a3
3)+O(w9),

1
5!

D4[ f (w)]5 =+42w6(a5
2)

+66w7(5a4
2a3)

+99w8(5a4
2a4 +10a3

2a2
3)+O(w9),

1
6!

D5[ f (w)]6 =+132w7(a6
2)

+
429
2

w8(6a5
2a3)+O(w9),

1
7!

D6[ f (w)]7 =+429w8(a7
2)+O(w9),

1
8!

D7[ f (w)]8 = O(w9).

Substitute the above in the Lagrange expansion:

z = w− f (w)+
1
2!

D[ f (w)]2− 1
3!

D2[ f (w)]3 +
1
4!

D3[ f (w)]4− 1
5!

D4[ f (w)]5

+
1
6!

D5[ f (w)]6− 1
7!

D6[ f (w)]7 +
1
8!

D7[ f (w)]8. (B.20)



Appendix B. Lagrange expansions 170

Final result for basic eighth order series

The inverse of the series

w = z+a2z2 +a3z3 +a4z4 +a5z5 +a6z6 +a7z7 +a8z8, (B.21)
is

z = w−w2[a2]

−w3[a3−2a2
2
]

−w4[a4−5a2a3+5a3
2
]

−w5[a5−3(2a2a4+a2
3)+21a2

2a3−14a4
2
]

−w6[a6−7(a2a5+a3a4)+28(a2
2a4+a2a2

3)−84a3
2a3+42a5

2
]

−w7[a7−4(2a2a6+2a3a5+a2
4)+12(3a2

2a5+6a2a3a4+a3
3)

−30(4a3
2a4+6a2

2a2
3)+330a4

2a3−132a6
2
]

−w8[a8−9(a2a7+a3a6+a4a5)+15(3a2
2a6+6a2a3a5+3a2a2

4+3a2
3a4)

−165(a3
2a5+3a2

2a3a4+a2a3
3)+99(5a4

2a4+10a3
2a2

3)

−1287a5
2a3+429a7

2
]

(B.22)

B.7 Application to a modified eighth order series

Replacing an by bn/n! gives the following pair of inverse series:

w = z+
b2

2!
z2 +

b3

3!
z3 +

b4

4!
z4 +

b5

5!
z5 +

b6

6!
z6 +

b7

7!
z7 +

b8

8!
z8. (B.23)

z = w− p2

2!
w2− p3

3!
w3− p4

4!
w4− p5

5!
w5− p6

6!
w6− p7

7!
w7− p8

8!
w8. (B.24)

where
p2 = [b2]

p3 =
[
b3−3b2

2
]

p4 =
[
b4−10b2b3+15b3

2
]

p5 =
[
b5−(15b2b4+10b2

3)+105b2
2b3−105b4

2
]

p6 =
[
b6−(21b2b5+35b3b4)+(210b2

2b4+280b2b2
3)−1260b3

2b3+945b5
2
]

p7 =
[
b7−(28b2b6+56b3b5+35b2

4)+(378b2
2b5+1260b2b3b4+280b3

3)

−(3150b3
2b4+6300b2

2b2
3)+17325b4

2b3−10395b6
2
]

p8 = [b8−(36b2b7+84b3b6+126b4b5)

+(630b2
2b6+2520b2b3b5+1575b2b2

4+2100b2
3b4)

−(6930b3
2b5+34650b2

2b3b4+15400b2b3
3)

+(51975b4
2b4+138600b3

2b2
3)−270270b5

2b3+135135b7
2
]

(B.25)

Comment: these results are extended to 12th order series in papers by (a) W E Bleieck and
(b) W G Bickley and J C P Miller. See bibliography.
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B.8 Application to series for TME

In evaluating the inverse of the complex series that arises in the derivation of the transverse
Mercator projection on the ellipsoid (TME) we have the following coefficients

b2 = i s b3 = c2W3 b4 = isc2W4 b5 = c4W5

b6 = i sc4W6 b7 = c6W7 b8 = i sc6W8 (B.26)

where i =
√
−1, s = sinφ , c = cosφ , t = tanφ and the W functions are of the form

W3 = β − t2

W4 = 4β
2 +β − t2

W5 = 4β
3(1−6t2)+β

2(1+8t2)−2β t2 + t4

W6 = 8β
4(11−24t2)−28β

3(1−6t2)+β
2(1−32t2)−2β t2 + t4

W7 = 61−479t2 +179t4− t6

W8 = 1385−3111t2 +543t4− t6, (B.27)

where β is defined in equation (5.53). Substituting for the b-coefficients in (B.25) gives

p2 = ict [1 ]

p3 = c2 [W3+3t2]
p4 = ic3t

[
W4−10W3−15t2]

p5 = c4 [W5+(15t2W4−10W 2
3 )−105t2W3−105t4]

p6 = ic5t
[
W6−(21W5+35W3W4)−(210t2W4−280W 2

3 ) +1260t2W3+945t4]
p7 = c6

[
W7+(28t2W6−56W3W5+35t2W 2

4 )−(378t2W5+1260t2W3W4−280W 3
3 )

−(3150t4W4−6300t2W 2
3 )+17325t4W3+10395t6]

p8 = ic7t
[
W8−(36W7+84W3W6+126W4W5)

−(630t2W6−2520W3W5+1575t2W 2
4−2100W 2

3 W4)

+(6930t2W5+34650t2W3W4−15400W 3
3 )

+(51975t4W4−138600t2W 2
3 )−270270t4W3−135135t6] (B.28)

Now substitute for the W . For p2, . . . p6 we use the expressions given in (B.27). For p7, p8
we use the spherical approximation (5.58) for all the terms on the right hand sides. That is
we set β = 1 in W3, . . .W6 on the right hand sides using the approximations

W3→W3 = 1− t2,

W4→W4 = 5− t2,

W5→W5 = 5−18t2 + t4,

W6→W6 = 61−58t2 + t4. (B.29)
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The p-coefficients now become

p2 = ict [1 ]

p3 = c2 [
β − t2 +3t2]

p4 = ic3t
[
4β

2 +β − t2−10(β − t2)−15t2]
p5 = c4 [4β

3(1−6t2)+β
2(1+8t2)−2β t2 + t4

+15t2(4β
2 +β − t2)

−10(β − t2)2−105t2(β − t2)−105t4]
p6 = ic5t

[
8β

4(11−24t2)−28β
3(1−6t2)+β

2(1−32t2)−2β t2 + t4

−21
{

4β
3(1−6t2)+β

2(1+8t2)−2β t2 + t4}
−35(β − t2)(4β

2 +β − t2)−210t2(4β
2 +β − t2)

+280(β − t2)2 +1260t2(β − t2) +945t4]
p7 = c6 [61−479t2 +179t4− t6 +28t2(61−58t2 + t4)−56(1− t2)(5−18t2 + t4)

+35t2(5− t2)2−378t2(5−18t2 + t4)−1260t2(1− t2)(5− t2)

+280(1− t2)3−3150t4(5− t2)+6300t2(1− t2)2 +17325t4(1− t2)

+10395t6]
p8 = ic7t

[
1385−3111t2 +543t4− t6 −36(61−479t2 +179t4− t6)

−84(1− t2)(61−58t2 + t4)−126(5− t2)(5−18t2 + t4)

−630t2(61−58t2 + t4)+2520(1− t2)(5−18t2 + t4)

−1575t2(5− t2)2 +2100(1− t2)2(5− t2)+6930t2(5−18t2 + t4)

+34650t2(1− t2)(5− t2)−15400(1− t2)3 +51975t4(5− t2)

−138600t2(1− t2)2−270270t4(1− t2)−135135t6]
Note that we have changed p7, p8 to p7, p8 to show that these coefficients have been evalu-
ated in the spherical approximation. Finally, simplifying these expressions gives

p2 = ict [1 ]

p3 = c2 [
β +2t2]

p4 = ic3t
[
4β

2−9β −6t2]
p5 = c4 [4β

3(1−6t2)−β
2(9−68t2)−72β t2−24t4]

p6 = ic5t
[
8β

4(11−24t2)−84β
3(3−8t2)+225β

2(1−4t2)+600β t2 +120t4]
p7 = c6 [61+662t2 +1320t4 +720t6]
p8 = ic7t

[
−1385−7266t2−10920t4−5040t6] (B.30)
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B.9 Proof of the Lagrange expansion

This derivation of the Lagrange expansion is included since it is to be found only in older
textbooks—see bibliography. This account is based on a simplified version of that in Whit-
taker’s Modern Analysis (1902!!) where there is a more general statement of the theorem.
The derivation requires an excursion into complex analysis. In particular we require three
results which follow from Cauchy’s theorem. Since these results can be found in most texts
on complex analysis we quote them without proof.

Definition: a function f (z) is analytic in some domain D if it is single valued and
differentiable within D, except possibly at a finite number of points, the singularities of
f (z). If no point of D is a singularity then we say that f (z) is regular.

• Cauchy’s integral formula: let f (z) be an analytic function, regular within a closed
contour C and continuous within and on C, and let a be a point within C. If in addition
f (z) has derivatives of all orders, then the n-th derivative at a is

f (n)(a) =
n!

2πi

∮
C

f (z)
(z−a)n+1 dz. (B.31)

• The following result is usually found as a corollary to the proof of the principle of
the argument. If f (z) and g(z) are regular within and on a closed contour C and f (z)
has a simple zero at z = a then

g(a) =
1

2πi

∮
C

g(z) f ′(z)
f (z)

dz. (B.32)

• Rouché’s theorem: if f (z) and g(z) are two functions regular within and on a closed
contour C, on which f (z) does not vanish and also |g(z)| < | f (z)|, then f (z) and
f (z)+g(z) have the same number of zeroes within C.

Let p(z) be regular within and on a closed contour C and let there be a single simple
zero at the point z = w inside C. Consider the equation

p(z) = t, (B.33)

where t is a constant such that

|p(z)|> |t| at all points of C. (B.34)

By Rouché’s theorem (with f → p and g→−t) we see that p(z) and p(z)− t have the same
number of zeroes inside C, namely one. The zero of p(z) is of course z = w: let the zero of
p(z)− t be z = a. Therefore setting f (z) = p(z)− t and g(z) = z in equation (B.32), noting
that t is a constant, we find the solution z = a of (B.33) is

z = a =
1

2πi

∮
C

zp′(z)
p(z)− t

dz. (B.35)
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Expanding the integrand

a =
1

2πi

∮
C

zp′(z)
p(z)

[
1+

∞

∑
1

(
t

p(z)

)n
]

dz. (B.36)

Since |t|< |p(z)| on C the series is convergent and we can integrate term by term to find

a =
∞

∑
0

Antn, (B.37)

where
A0 =

1
2πi

∮
C

zp′(z)
p(z)

dz, An =
1

2πi

∮
C

zp′(z)
[p(z)]n+1 dz (n≥ 1). (B.38)

Now since p(z) has a simple zero at z = w the first integral may be integrated by setting
g(z) = z in equation (B.32).

A0 = w. (B.39)

For the second integral we integrate by parts. The integral of the total derivative is zero
because the change in a single valued function around a closed curve is zero. Therefore

An =
1

2πi
1
n

∮
C

1
[p(z)]n

dz, (n≥ 1). (B.40)

Now set

p(z) = (z−w)q(z) =
z−w
r(z)

. (B.41)

so that

An =
1

2πi
1
n

∮
C

[r(z)]n

(z−w)n dz. (B.42)

p(z) has one zero inside C, at z = w, so q(z) will have no zeroes within C and r(z) will have
no poles within C. Using the Cauchy integral formula (B.31) An becomes

An =
1
n!

D(n−1)
z [r(z)]n

∣∣∣
z=w

=
1
n!

D(n−1)
w [r(w)]n (n≥ 1). (B.43)

Therefore the solution of

z−w
r(z)

= t (B.44)

is given by

z = a = w+
∞

∑
1

tn

n!
D(n−1)

w [r(w)]n. (B.45)
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Finally we set

f (z) =−t r(z), (B.46)

so that equation (B.44) becomes

w = z+ f (z), (B.47)

with the solution

z = w+
∞

∑
1

(−1)n

n!
D(n−1)

w [ f (w)]n. (B.48)

This is the form of the expansion given in Section B.3. The domain of validity is discussed
in the textbooks. In the current applications we start from convergent series for w(z) and
find that the above series for z(w) is also convergent.

Web resources:

Mathworld series reversion

Mathworld Lagrange inversion

Wikipedia Lagrange inversiontheorem

http://mathworld.wolfram.com/SeriesReversion.html
http://mathworld.wolfram.com/LagrangeInversionTheorem.html
http://en.wikipedia.org/wiki/Lagrange inversion theorem
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Blank page. A contradiction.
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AppendixC
Plane Trigonometry

C.1 Trigonometric functions

basic definition exp ix = cosx+ isinx (C.1)

exp i(x+ y) = (cosx+ isinx)(cosy+ isiny) (C.2)

real part of (C.2) cos(x+ y) = cosx cosy− sinx siny (C.3)

y→−y cos(x− y) = cosx cosy+ sinx siny (C.4)

imag. part of (C.2) sin(x+ y) = sinx cosy+ cosx siny (C.5)

y→−y sin(x− y) = sinx cosy− cosx siny (C.6)

(C.5) / (C.3) tan(x+ y) =
tanx+ tany

1− tanx tany
(C.7)

(C.6) / (C.4) tan(x− y) =
tanx− tany

1+ tanx tany
(C.8)

(C.5) + (C.6) sinxcosy =
1
2
[sin(x+ y)+ sin(x− y)] (C.9)

x↔ y cosxsiny =
1
2
[sin(x+ y)− sin(x− y)] (C.10)

(C.3) + (C.4) cosxcosy =
1
2
[cos(x+ y)+ cos(x− y)] (C.11)

(C.4) – (C.3) sinxsiny =
1
2
[cos(x− y)− cos(x+ y)] (C.12)

x± y→ x, y in (C.9) sinx+ siny = 2sin
x+ y

2
cos

x− y
2

(C.13)

x± y→ x, y in (C.10) sinx− siny = 2cos
x+ y

2
sin

x− y
2

(C.14)

x± y→ x, y in (C.11) cosx+ cosy = 2cos
x+ y

2
cos

x− y
2

(C.15)

x± y→ x, y in (C.12) cosx− cosy =−2sin
x+ y

2
sin

x− y
2

(C.16)
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y = x in (C.4) 1 = cos2x+ sin2x (C.17)

sec2x = 1+ tan2x (C.18)

csc2x = cosec2x = 1+ cot2x (C.19)

y = x in (C.3) cos2x = cos2x− sin2x (C.20)

use (C.17) = 1−2sin2x (C.21)

use (C.17) = 2cos2x−1 (C.22)

y = x in (C.5) sin2x = 2sinx cosx (C.23)

from (C.21) sin2x =
1
2
[1− cos2x] (C.24)

from (C.22) cos2x =
1
2
[1+ cos2x] (C.25)

use (C.21) sin3x =
1
2

sinx [1− cos2x]

use (C.9) =
1
2

sinx− 1
4
[sin3x− sinx]

=
3
4

sinx− 1
4

sin3x (C.26)

from (C.26) sin3x cosx =
3
4

sinxcosx− 1
4

sin3xcosx

use (C.9) =
3
8

sin2x− 1
8
[sin4x+ sin2x]

=
1
8
[2sin2x− sin4x] (C.27)

from (C.24) sin4x =
1
4
[1− cos2x]2

use (C.25) =
1
4

[
1−2cos2x+

1
2
+

1
2

cos4x
]

=
1
8
[3−4cos2x+ cos4x] (C.28)

use (C.25) cos3x =
1
2

cosx [1+ cos2x]

use (C.11) =
1
2

cosx+
1
4
[cos3x+ cosx]

=
3
4

cosx+
1
4

cos3x (C.29)
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NOTATION Sk ≡ sinkx (C.30)

Ck ≡ coskx (C.31)

Hence sin2x =
1
2
[1−C2] (C.32)

sin3x =
1
4
[3S−S3] (C.33)

sin4x =
1
8
[3−4C2 +C4] (C.34)

sin5x =
1
16

[10S−5S3 +S5] (C.35)

sin6x =
1
32

[10−15C2 +6C4−C6] (C.36)

sin7x =
1
64

[35S−21S3 +7S5−S7] (C.37)

sin8x =
1

128
[35−56C2 +28C4−8C6 +C8] (C.38)

sinx cosx =
1
2
[S2] (C.39)

sin3x cosx =
1
8
[2S2−S4] (C.40)

sin5x cosx =
1
32

[5S2−4S4 +S6] (C.41)

sin7x cosx =
1

128
[14S2−14S4 +6S6−S8] (C.42)

C.2 Hyperbolic functions

The basic definitions are

coshx =
ex + e−x

2
, sinhx=

ex− e−x

2
. (C.43)

From equation (C.1) the corresponding equations are

cosx =
eix + e−ix

2
, sinx=

eix− e−ix

2i
, (C.44)

so we can immediately deduce that

cos ix = coshx, sin ix= isinhx, tan ix = i tanhx, (C.45)

cosh ix = cosx, sinh ix= isinx, tanh ix = i tanx. (C.46)

These identities can be used to derive all the hyperbolic formulae from the trigonometric
identities simply by replacing x and y by ix and iy. This effectively changes all cosine terms
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to cosh. Each sine term becomes isinh and where there is a single sinh in each term of
the identity an overall factor of i will cancel. Terms which have a product of two sines will
become a product of two isinh terms giving an overall sign change. Likewise for the tangent
terms. We list only the identities corresponding to (C.3–C.8) and (C.17–C.23).

cosh(x± y) = coshx coshy± sinhx sinhy (C.47)

sinh(x± y) = sinhx coshy± coshx sinhy (C.48)

tanh(x± y) =
tanhx± tanhy

1± tanhx tanhy
(C.49)

1 = cosh2x− sinh2x (C.50)

sech2x = 1− tanh2x (C.51)

cosech2x = coth2x−1 (C.52)

cosh2x = cosh2x+ sinh2x

= 1+2sinh2x

= 2cosh2x−1 (C.53)

sinh2x = 2sinhxcoshx (C.54)

Since the hyperbolic functions are defined in terms of the exponential function it is not
surprising their inverses can be related to the logarithm function. We consider the three
main cases in parallel.

y = sinh−1 x y = cosh−1 x y = tanh−1 x

x =
ey− e−y

2
x =

ey + e−y

2
x =

ey− e−y

ey + e−y

0 = e2y−2xey−1 0 = e2y−2xey +1 x(e2y +1) = e2y−1

ey = x±
√

x2 +1 ey = x±
√

x2−1 e2y =
1+ x
1− x

.

Taking into account of the ranges of these functions we have

sinh−1 x = ln
(

x+
√

x2 +1
)

−∞<x < ∞ (C.55)

cosh−1 x = ln
(

x+
√

x2−1
)

x≥ 1 (C.56)

tanh−1 x =
1
2

ln
(

1+ x
1− x

)
−1<x < 1 (C.57)

continued
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C.3 Gudermannian functions

Gudermannians link trigonometric and hyperbolic functions. They may be used to describe
the Mercator projections. For real x we can take the basic definition as

gd x = tan−1 sinhx. (C.58)

This definition implies that tan(gdx) = sinhx. The following equivalent definitions follow
easily from the properties of the trigonometric and hyperbolic functions. For example, for
the second of the following use sec2(gdx) = 1+ tan2(gdx) = 1+ sinh2 x = cosh2 x.

gd x = tan−1 sinhx = sec−1 coshx = sin−1 tanhx

= cos−1 sechx = cot−1 cschx = csc−1 cothx. (C.59)

Each of these provides an inverse: simply replace x by gd−1 x and set gd(gd−1 x) = x.

gd−1 x = sinh−1 tanx = cosh−1 secx = tanh−1 sinx

= sech−1 cosx = csch−1 cotx = coth−1 cscx. (C.60)

The inverse gudermannians can be expressed in terms of logarithms by using C.57 and
elementary operations:

gd−1 x =
1
2

ln
[

1+sinx
1− sinx

]
= ln(secx+ tanx) = ln

[
tan
(x

2
+

π

4

)]
. (C.61)

In the last of these replace x→ gdx and invert to give

gdx = 2tan−1 ex− π

2
=

π

2
−2tan−1 e−x, (C.62)

where the second follows by replacing tan(x/2+π/4) by cot(π/4− x/2).

Equations C.45, C.46 may be used for gudemannians with imaginary arguments.

tan[gd(ix)] = sinh(ix) = isinx,

tanh[igd(ix)] =−sinx,

igd(ix) =− tanh−1[sinx],

gd(ix) = igd−1 x . (C.63)

Similarly

tanh[gd−1(ix)] = sin(ix) = isinhx,

tan[igd−1(ix)] =−sinhx,

igd−1(ix) =− tan−1[sinhx],

gd−1(ix) = igd x . (C.64)
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Integral representations:

gdx =
∫ x

0
sechθ dθ , −∞< x < ∞. (C.65)

gd−1 x =
∫ x

0
secθ dθ , −π/2< x< π/2 . (C.66)

For the second integral set

cosθ = sin(θ +π/2)

= 2sin(θ/2+π/4)cos(θ/2+π/4)

= 2tan(θ/2+π/4)cos2 (θ/2+π/4) .

The integral becomes

gd−1 x =
∫ x

0

sec2 (θ/2+π/4)
tan(θ/2+π/4)

dx = ln
[
tan
( x

2
+

π

4

)]
. (C.67)

There is no need for modulus signs inside the logarithm. For−π/2≤ φ ≤ π/2 the argument
of the tangent is in the interval [0,π/2], therefore the argument of the logarithm is in the
range [0,∞) and the logarithm itself varies from −∞ to ∞.

The integral for gdx may be verified by replacing x by ix in equation C.66.

For further properties of the gudermannians see see Appendix G, Equation G.24 onwards.

Web resources

NIST: Sections 4.14–4.45

Mathworld gudermannian

Mathworld: inverse gudermannian

Wikipedia gudermannian

http://dlmf.nist.gov/4.14
http://mathworld.wolfram.com/Gudermannian.html
http://mathworld.wolfram.com/InverseGudermannian.html
http://en.wikipedia.org/wiki/Gudermannian_function
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AppendixD
Spherical trigonometry

D.1 Introduction

A great circle on a sphere is defined by the intersection of any plane through the centre of
the sphere with the surface of the sphere. Any two points on the sphere must lie on some
great circle and the shorter part of that great circle is also the shortest distance between
the points. In general three great circles define a spherical triangle (Figure D.1) and this
appendix develops the trigonometry of such triangles. There are many good (but old) text
books. See Todhunter (1859): it is available on the web.

Consider the three great circles defining the trian-
gle ABC: they meet again in the points A1, B1 and
C1 defining the triangle A1B1C1. In fact they define
eight triangles since each pair of geodesics bounds
four triangles but ABC and A1B1C1 are counted three
times. (Think of slicing an apple into eight pieces
with three diametral cuts). Note that we do not con-
sider the ’improper’ triangles such as that formed by
the interior arcs BA , BC together with the exterior
arc AC1A1C. Such improper triangles have one angle
greater than π . Their solution presents no difficulty
but we refer to Todhunter’s book for details.
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Figure D.1

We now restrict attention to triangles in which the angles are less than or equal to π ,
with the proviso that not all equal to π: in the latter case the triangle degenerates into three
points on one great circle with the sum of the angles equal to 3π and the sum of the sides
equal to 2π (on the unit sphere). The rigorous proof of this last statement is to be found in
Euclid (300BC), Book 11, Proposition 21. We shall see that it has as a corollary that the
sum of the angles of a spherical triangle is greater than π . This lower bound is approached
by small triangles (sides much less than the radius) that are almost planar.
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Figure D.2 shows the spherical triangle in more de-
tail: A, B, C label the vertices and also give the mea-
sure (in radians) of the angles of the spherical tri-
angle and the angles between planes OAC, OAB and
OBC. The sides of the spherical triangle are a, b, c;
these give the distances along the great circle arcs
joining the vertices. The angles subtended by the
sides at the centre are α , β and γ so that a = αR etc.
The aim of this appendix is to prove the principal re-
lations between the six elements of a spherical trian-
gle.The fundamental relation is the spherical cosine
rule. ALL OTHER RULES, and there are many, can
be derived from the cosine rule.

γ

β

α

�

�

�

�

�

�

� �

�

Figure D.2

D.2 Spherical cosine rule

Geometric proof
In Figure D.2 AD and AE are the tangents to the sides of the spherical triangle at A. As long
as the angles β and γ are strictly less than π/2 the tangent to the side AB meets the radius
OB extended to D and the tangent to the side AC meets the radius OC extended to E. Since
any tangent to the sphere is normal to the radius at the point of contact we have that the
triangles OAD and OAE are right angled.

We apply the planar cosine rule to the triangles ODE and ADE:

DE2 = OD2 +OE2−2OD.OE cosα,

DE2 = AD2 +AE2−2AD.AE cosA.

Subtracting these equations and using Pythagoras’ theorem to set OD2−AD2 = OA2 and
OE2−AE2 = OA2 we obtain

0 = 2OA2 +2AD.AE cosA−2OD.OE cosα

Dividing each term by the product OD.OE and using OA/OD = cosγ etc. gives

cosα = cosγ cosβ + sinγ sinβ cosA.

It is conventional to express these identities in terms of the actual sides so that we should
set α = a/R etc. If we assume that the lengths have been scaled to a unit sphere then the
above, alongwith the two relations obtained by cyclic permutations, becomes

cosa = cosb cosc+ sinb sinc cosA,

cosb = cosc cosa+ sinc sina cosB,

cosc = cosa cosb+ sina sinb cosC.

(D.1)
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For a small triangle with a, b, c� 1 on the unit sphere, the spherical cosine rules reduce
to the planar cosine rule if we neglect cubic terms. For example the first becomes

1− a2

2
=

(
1− b2

2

)(
1− c2

2

)
+bccosA,

which simplifies to
a2 = b2 + c2−2bccosA.

The above proof assumes that the angles β and γ are less than ninety degrees for the con-
structions as drawn. This restriction may be removed; it is discussed in detail in Todhunter’s
book (pages 16 to 19). The following alternative proof does not rely on these assumptions.

For any given spherical triangle we can introduce
Cartesian axes with the z-axis along OA and the xz-
plane defined by the plane OAB. Take the radius
of the sphere as unity and define vectors B and C
along the radii OB and OC respectively. The an-
gle between the planes AOM and AON is given by
∠MON = A, so the components of these unit vec-
tors are

B = (sinc, 0 , cosc),

C = (sinb cosA,sinb sinA, cosb) (D.2)
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Figure D.3

Now the angle between the unit vectors is simply a, the angle subtended at the centre
by the arc BC. Therefore

B·C = cosa = sinb sinc cosA+0+ cosb cosc, (D.3)

in agreement with our previous result for the cosine rule. This is the simplest proof of the
cosine rule: it needs no restrictions on the angles.

D.3 Spherical sine rule

Derivation from the cosine rule

From equation (D.1) we have

cosA =
cosa− cosb cosc

sinb sinc

sin2A = 1−
(

cosa− cosb cosc
sinb sinc

)2

=
(1− cos2b)(1− cos2c)− (cosa− cosb cosc)2

sin2b sin2c
.
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Therefore
sinA
sina

= ∆(a,b,c), (D.4)

where
∆(a,b,c) =

[1− cos2a− cos2b− cos2c+2cosacosbcosc]1/2

sinasinbsinc
. (D.5)

Since ∆ is invariant under a cyclic permutation of a, b, c we deduce the spherical sine rule

sinA
sina

=
sinB
sinb

=
sinC
sinc

= ∆(a,b,c) (D.6)

The three separate rules are

sinb sinA = sina sinB,

sinc sinA = sina sinC,

sinb sinC = sinc sinB. (D.7)

Spherical sine rule: geometric proof

Consider the following construction. Take any point P
on the line OA and drop a perpendicular to the point N
in the plane OBC. Draw the perpendicular from N to
the line OB at the point M. Therefore the three trian-
gles PMN, PON and ONM are all right angled trian-
gles and we can therefore use Pythagoras’ theorem to
deduce that

PM2 = MN2 +PN2,

OP2 = ON2 +PN2,

ON2 = OM2 +MN2.
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Figure D.4
Therefore we must have

PM2 = (ON2−OM2)+(OP2−ON2) = OP2−OM2,

so that the triangle OPM must have a right angle at M. From this we first deduce that
PM = OPsinγ . Secondly we note that since PM and NM are both normal to OB then the
angle PMN is the angle between the planes OAB and OBC; this is the angle B so that we
must have

PN = PM sinB = OPsinγ sinB.

We now repeat the argument with the construction of NS perpendicular to OC and prove
that triangle OPS is right angled and the angle PSN is equal to C. (M, N and S are not
collinear). Therefore we find

PN = PS sinC = OPsinβ sinC.
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Comparing the two expressions for PN we deduce that

sinγ sinB = sinβ sinC.

This whole process can be repeated with P an arbitrary point on OB or OC and dropping
perpendiculars onto the face OAC and OAB respectively. Clearly this will give

sinγ sinA = sinα sinC,

sinβ sinA = sinα sinB.

On the unit sphere the angles α, η , γ will be replaced by a, b, c giving equations (D.6).
Note that the construction and proof will need slight modifications if either of the angles B
or C exceeds π/2. This is discussed in Todhunter.

D.4 Solution of spherical triangles I

In general, if we know three elements of a triangle then we might expect to find the other
three elements by direct application of the spherical sine and cosine rules. This is NOT

possible: to complete the solution in many cases we shall need further rules developed in
the ensuing sections.

The six distinct ways in which three elements may be given are shown in Figure D.5
along with a seventh case involving four given elements. In each figure the given elements
are shown below and the given angles are marked with a small arc and the given sides
are marked with a cross bar; each figure has variations given by cyclic permutations. The
solution of such spherical triangles is harder than in the planar case because we do not know
the sum of the angles: given two angles we do not know the third.
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Figure D.5

• Case 1: this can be solved by using the cosine rule.

• Case 2: cosine rule gives a and then we are back to Case 1.

• Case 3: sine rule gives C and then we are in Case 7.

• Case 4: no progress possible with only sine and cosine rules.

• Case 5: sine rule gives b and then we are in Case 7.

• Case 6: no progress possible. This case doesn’t arise in plane geometry.

• Case 7: no progress possible with only sine and cosine rules.
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This is an appropriate point to mention that any determination of an angle or side from
its sine will generally lead to ambiguities since sinx = sin(π − x). However the angles
and sides on the unit sphere are in the interval (0,π) so their determination from cosines,
secants, tangents or cotangents will be unambiguous. Likewise the sine, cosine or tangent
of any half-angle (or side) is positive and its inverse is also unambiguous. Many of the
formulae that we will derive were established to avoid the sine ambiguity.

D.5 Polar triangles and the supplemental cosine rules

Figure D.6a below shows the three great circles which intersect to form the spherical triangle
ABC. In addition we show the normals to the plane of each great circle; each intersects the
sphere in two points each of which is a ’pole’ when a specific great circle is identified as
an equator. As shown some of the poles (small solid circles) are visible and some(open
circles) are on the hidden face. Three of these six poles may be used to define the polar
triangle. The convention is that A and its pole A′ lie on the same side of the diametral plane
containing BC; likewise for the others. We shall now prove the following statements.

• The sides of the polar triangle A′B′C′ are the supplements of the angles of the original
triangle ABC. (We assume a unit sphere on which the lengths of the sides are equal
to the radian measure of the angles they subtend at the centre).

• The angles of the polar triangle A′B′C′ are the supplements of the sides of the original
triangle ABC.
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Figure D.6

Figure D.6b shows the triangle ABC, the pole A′ of A and the corresponding ‘equator’
formed by extending the side BC. Note three properties:

1. Any great circle through the pole A′ to its equator BC is a quadrant arc of length π/2
(on the unit sphere), i.e. A′K = A′L = π/2.

2. Any great circle through A′ intersects its equator BC at a right angle, as at K and L.

3. The angle λ (in radians) between two such quadrant arcs is equal to the length of the
segment cut on the equator by the arcs, i.e. λ = ∠KA′L = KL.
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Figure D.7, which is neither an elevation nor a per-
spective view, shows the schematic relation between
the triangle ABC and its polar triangle A′B′C′. The
sides of ABC are extended along their great circles to
meet the sides of A′B′C′ at the points shown. From
the the three properties discussed in the previous
paragraph we can deduce the following results.
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Figure D.7

• The great circles A′B′ and A′C′ through the pole A′ intersect the equator corresponding
to A′, that is BC extended, at points D and E. The intersections are right angles and
the distance DE is equal to the angle A′ expressed in radians. Therefore A′ = DE.

• B′G is a great circle through the pole B′ meeting its corresponding equator CA at G.
The intersection at G is at right angles and the length B′G = π/2. Similarly C′F is
a great circle through the pole C′ meeting its corresponding equator AB at F : the
intersection at F is at right angles and the length C′F = π/2.

• Now consider the intersections of the great circle B′C′ with the great circles defined
by AB and AC. Since the angles at F and G are right angles we deduce that A must be
the pole to the equator B′C′. Similarly B, C must be the poles of the equators C′A′ and
A′B′ repectively. We conclude that the polar triangle of the polar triangle A′B′C′ must
be the original triangle ABC. Consequently (1) since C is the pole of A′B′ we must
have CD = π/2; (2) since B is the pole of C′A′ we must have BE = π/2; (3) since A
is the pole of B′C′ we must have FG = A.

We now have all the information we need to deduce

A′ = DE = DC+BE−BC =
π

2
+

π

2
−a = π−a,

a′ = B′C′ = B′G+FC′−FG =
π

2
+

π

2
−A = π−A.

Similar results follow for the other angles and sides of the polar triangle so that:

A′ = π−a B′ = π−b C′ = π− c,

a′ = π−A b′ = π−B c′ = π−C. (D.8)

An important corollary follows from the existence of the polar triangle. We have already
stated that Euclid proves that the sum of the sides of a spherical triangle on the unit sphere
satisfies σ = a+b+c < 2π . Applying this to the polar triangle gives 3π−A−B−C < 2π so
that Σ, the sum of the angles, is greater than π . Since we conventionally take the angles to
be less than π then we must have π < Σ< 3π . (The restriction to angles and sides less than
π may be lifted; the improper triangles so formed are discussed in Todhunter. We have no
need to consider them here.)
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Supplemental cosine rules

As an example of using the polar triangle let us apply the cosine rules of (D.1) to A′B′C′:

cosa′ = cosb′ cosc′+ sinb′ sinc′ cosA′,
cosb′ = cosc′ cosa′+ sinc′ sina′ cosB′,
cosc′ = cosa′ cosb′+ sina′ sinb′ cosC′.

(D.9)

Now substitute for angles and sides usung equation (D.8) noting that cos(π−θ) =−cosθ

and sin(π−θ) = sinθ :

cosA+ cosB cosC = sinB sinC cosa,
cosB+ cosC cosA = sinC sinA cosb,
cosC+ cosA cosB = sinA sinB cosc.

(D.10)

Now these equations, obtained by applying a known rule to the polar triangle, are obviously
new relations between the elements of the original triangle; they are called the supplemental
cosine rules. This is an example of a powerful method of generating a new formula from
any that we have already found.

The supplemental cosine rules clearly provide a way of solving a spherical triangle when
all three angles are given. This is Case 6 in Figure D.5.

Note that a new rule does not always arise. For example, applying the sine rule to A′B′C′

gives
sinA′

sina′
=

sinB′

sinb′
=

sinC′

sinc′
.

On substituting (D.8) we have the usual rules simply inverted:

sina
sinA

=
sinb
sinB

=
sinc
sinC

.

Alternative derivation of the supplemental cosine rules

It is possible to derive the supplemental cosine rules directly without appealing to the polar
triangle. For example, in the first formula of (D.10) substitute for the terms on the left-hand
side using the normal cosine rules:

cosA+cosBcosC=
(cosa−cosbcosc)sin2a+(cosb−cosccosa)(cosc−cosacosb)

sin2asinbsinc

=
cosa[1− cos2a− cos2b− cos2c+2cosacosbcosc]

sin2asinbsinc
= cosa∆

2 sinb sinc

= cosa sinB sinC,

where we have used the definition of ∆ in (D.5) and also the sine rule (D.6). Thus we
could have proceeded in this way and then deduced the existence of the polar triangle as a
corollary without the geometrical proof that we presented earlier.
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D.6 The cotangent four-part formulae

The six elements of a triangle may be written in an anti-clockwise order as (aCbAcB). The
cotangent, or four-part, formulae relate two sides and two angles forming four consecutive
elements around the triangle, for example (aCbA) or BaCb. The six distinct formulae that
we shall prove are

(a) cosb cosC = cota sinb− cotA sinC, (aCbA)
(b) cosb cosA = cotc sinb− cotC sinA, (CbAc)
(c) cosc cosA = cotb sinc− cotB sinA, (bAcB)
(d) cosc cosB = cota sinc− cotA sinB, (AcBa)
(e) cosa cosB = cotc sina− cotC sinB, (cBaC)

( f ) cosa cosC = cotb sina− cotB sinC, (BaCb),

(D.11)

where the subset of elements involved is shown to the right of every equation. In the first
equation, for the set aCbA, we term a and A the outer elements and C and b the inner
elements. With this notation the general form of the equations is

cos(inner side).cos(inner angle) = cot(outer side).sin(inner side)
−cot(outer angle).sin(inner angle)

(D.12)

Note that the ‘inner’ elements of each set formula occur twice and cannot be deduced from
the other elements; only the ‘outer’ elements of each set may be derived in terms of the
other three. For example in the first equation involving the set aCbA we can only determine
the outer side a in terms of CbA or the outer angle A in terms of aCb. Note also that the
outer angle or side is determined from its cotangent so that there is no ambiguity.

To prove the first formula start from the cosine rule (D.1a) and on the right-hand side
substitute for cosc from (D.1c) and for sinc from (D.6):

cosa = cosbcosc+ sinbsinccosA

= cosb(cosacosb+ sinasinbcosC)+ sinbsinC sinacotA

cosasin2b = cosbsinasinbcosC+ sinbsinC sinacotA.

The result follows on dividing by sinasinb. Similar techniques with the other two cosine
rules give D.11c,e. Equations D.11b,d,f follow by applying D.11e,a,c to the polar triangle.

Solution of spherical triangles II
The four-part formulae may be used to give solutions to two of the cases discussed

in Section D.4. In Case 2 in Figure D.5, where we are given (bAc), we can use equa-
tions D.11b,c to find the angles C, B from their cotangents: we can then find a from D.11a
without any sine ambiguity. We can now solve Case 4, where we are given (BaC), by using
equations D.11e,f to give the sides c, b and we can then find A from D.11a. We are still left
with the problem solving Case 7 (since Cases 3, 5 can also be reduced to Case 7).
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D.7 Half-angle and half-side formulae

If 2s = (a+ b+ c) is the sum of the sides and 2S = (A+B+C) is the sum of the angles,
then we can easily prove the following formulae:

sin
A
2
=

[
sin(s−b)sin(s−c)

sinbsinc

]1/2

sin
a
2
=

[
−cosScos(S−A)

sinBsinC

]1/2

cos
A
2
=

[
sinssin(s−a)

sinbsinc

]1/2

cos
a
2
=

[
cos(S−B)cos(S−C)

sinBsinC

]1/2

tan
A
2
=

[
sin(s−b)sin(s−c)

sinssin(s−a)

]1/2

tan
a
2
=

[
−cosScos(S−A)

cos(S−B)cos(S−C)

]1/2

(D.13)

To prove the first formula use cosA = 1−2sin2(A/2) and the cosine rule (D.1).

sin2 A
2
=

1− cosA
2

=
1
2
− cosa− cosbcosc

2sinbsinc
=

cos(b−c)− cosa
2sinbsinc

=
1

sinbsinc
sin
(

a+b− c
2

)
sin
(

a−b+ c
2

)
.

Since 2(s−b) = (a+ b+ c)− 2b = a− b+ c etc. we obtain the first result. The second
follows from 1+cosA = 2cos2(A/2) and the third from their quotient. The results in the
right hand column follow by applying the first column formulae to the polar triangle. They
also follow from (D.10) and by starting with cosa = 1−2sin2(a/2) etc. .

It is worth commenting on the negative signs under some radicals. Take the expression
for sina/2 as an example. Since π < A+B+C < 3π we have π/2 < S < 3π/2 so that
cosS < 0. Now in any spherical triangle the side BC is the shortest distance between B
and C so we must have BC < BA+AC, or a < b+ c; i.e. any side is less than the sum of
the others. Applying this to the polar triangle we have π−A < (π−B)+ (π−C); therefore
2(S−A) = B+C−A< π or (S−A)< π/2. Furthermore, since A< π we have B+C−A>
−π and consequently 2(S−A)>−π . Therefore −π/2< (S−A)< π/2 and cos(S−A)> 0.
These results guarantee that the expressions under the radical are positive.

Solution of spherical triangles III
The above formulae are clearly applicable to the cases where we know either three sides

or three angles, cases which we have solved by either the normal or supplemental cosine
rules. The expressions given here involving tangents of half angles are to be preferred
whenever the angle or side to be found is very small or nearly π .
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Delambre (or Gauss) analogies.

sin 1
2(A+B)

cos 1
2C

=
cos 1

2(a−b)

cos 1
2 c

sin 1
2(A−B)

cos 1
2C

=
sin 1

2(a−b)

sin 1
2 c

cos 1
2(A+B)

sin 1
2C

=
cos 1

2(a+b)

cos 1
2 c

cos 1
2(A−B)

sin 1
2C

=
sin 1

2(a+b)

sin 1
2 c

(D.14)

These are proved by expanding the numerator on the left hand side and using the half angle
formulae. For example, using equations C.5, C.13 and C.23

sin
1
2
(A+B) = sin

A
2

cos
B
2
+ cos

A
2

sin
B
2

=

[
sinssin2(s−b)sin(s−c)

sina sinbsin2c

]1/2

+

[
sinssin2(s−a)sin(s−c)

sina sinbsin2c

]1/2

=
sin(s−b)+ sin(s−a)

sinc

[
sinssin(s−c)

sinasinb

]1/2

=
sin 1

2 c cos 1
2(a−b)

sin 1
2 c cos 1

2 c
cos

1
2

C,

and hence the required result.

Napier’s analogies

Published by Napier in 1614. His methods were purely geometric but we obtain them by
dividing the Delambre formulae.

tan 1
2(A+B) =

cos 1
2(a−b)

cos 1
2(a+b)

cot 1
2C tan 1

2(a+b) =
cos 1

2(A−B)

cos 1
2(A+B)

tan 1
2 c

tan 1
2(A−B) =

sin 1
2(a−b)

sin 1
2(a+b)

cot 1
2C tan 1

2(a−b) =
sin 1

2(A−B)

sin 1
2(A+B)

tan 1
2 c

(D.15)

Solution of spherical triangles IV

We now have all we need to solve all the possible configurations shown in Figure D.5.
Napier’s analogies clearly provide the means of solving Case 7, and hence Cases 3, 5. They
also provide a means of progressing without the trouble of ambiguities arising from the use
of the sine rule. For example in Case 4 given a, B,C, we can use the Napier analogies to
find b± c and then again to find A.
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D.8 Right-angled triangles

There are many problems in which one of the angles, say C, is equal to π/2. In this case
there are only 5 elements and in general two will suffice to solve the triangle. We shall
show that the solution of such a triangle can be presented as a set of 10 equations involving
3 elements so that every element can be expressed in terms of any pair of the other elements.

The required 10 equations involving C are found from the third cosine rule (D.1), two
sine rules (D.7), four cotangent formulae (D.11) and all three of the supplemental cosine
rules (D.10). Setting C = π/2 we obtain (from the equations indicated)

(D.1c) cosc = cosa cosb, (D.11b) tanb = cosA tanc,

(D.7b) sina = sinA sinc, (D.11e) tana = cosB tanc,

(D.7c) sinb = sinB sinc, (D.10a) cosA = sinB cosa,

(D.11a) tana = tanA sinb, (D.10b) cosB = sinA cosb,

(D.11f) tanb = tanB sina, (D.10c) cosc = cotA cotB. (D.16)

As an example suppose we are given a and c (and C = π/2). Then we can find c, A, B from
the first, fourth and fifth equations.

Napier’s rules for right-angled triangles

Napier showed that the ten equations which give all
possible relations in a right-angled triangle can be
summarised by two simple rules along with a simple
picture. We define the ‘circular parts’ of the triangle
to be a, b, 1

2 π −A, 1
2 π − c, and 1

2 π −B. These are
arranged around the circle in the natural order of the
triangle, C omitted between a and b. Choose any of
the five sectors and call it the middle part. The sec-
tors next to it are called the ‘adjacent’ parts and the
remaining two parts are the ‘opposite’ parts. Napiers
rules are:

�

�π�−

�π�−

�π�−

�

Figure D.8

sine of middle part = product of tangents of adjacent parts,
sine of middle part = product of cosines of opposite parts.

(D.17)

For example if we take 1
2 π − c as the middle part the first rule gives sin(π/2− c) =

tan(π/2−A) tan(π/2−B) which gives the last of the equations in (D.16); if we apply the
second rule we get sin(π/2− c) = cosacosb which is the first of the equations in (D.16).
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D.9 Quadrantal triangles

The triangle ABC is quadrantal if at least one side subtends an angle of π/2 at the centre of
the sphere. Without loss of generality take c = π/2. Therefore the angle C′ = π− c of the
polar triangle is equal to π/2. Now apply Napier’s rules to the polar triangle with C′ = π/2:

a′ = π−A, b′ = π−B, A′ = π−a, B′ = π−b.

The circular parts of the polar triangle

a′, b′,
π

2
−A′,

π

2
− c′,

π

2
−B′,

must be replaced by

π−A, π−B, a− π

2
, C− π

2
, b− π

2
,

Noting that sin(x−π/2) = −cosx, cos(x−π/2) =
sinx and tan(x−π/2) =−cotx we have:
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�π�

�π�

�
π�

�

π

π−

−

−

−

−

Figure D.9

cosC =−cosA cosB, tanB =−cosa tanC,

sinA = sina sinC, tanA =−cosb tanC,

sinB = sinb sinC, cosa = sinb cosA,

tanA = tana sinB, cosb = sina cosB,

tanB = tanb sinA, cosC =−cota cotb. (D.18)

Example
As an example of a quadrantal triangle we consider
a problem arising in the discussion of geodesics on
a sphere. With the following identifications

a = s, b =
π

2
−φ , c =

π

2
,

A = λ , B = α0, C = π−α. (D.19)
Figure D.10

the equations (D.18) become

cosα = cosλ cosα0, tanα0 = coss tanα,

sinλ = sins sinα, tanλ = sinφ tanα,

sinα0 = cosφ sinα, coss = cosφ cosλ ,

tanλ = tans sinα0, sinφ = sins cosα0,

tanα0 = cotφ sinλ , cosα = cots tanφ . (D.20)

The practical problems are (a) given α0 and s find λ , φ and α; (b) given λ , φ find α0 and s.
For the first we use the fourth, ninth, and then the first equation. For the second we use the
fifth and eighth equations.
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Solution of spherical triangles V

The rules for right angled triangles provide another method
for the solution of spherical triangles in general. Consider the
triangle ABC shown in the figure; b, c, B are assumed given.
Draw the great circle through A which meets BC at right angles
at the point D. We first solve the triangle ABD using c and B
to find AD, BD and ∠BAD. Then in triangle ACD we use AD
and b to find CD and the angles ∠CAD and C. The difficulty
with this method, apart from the increased number of steps, is
to find the most appropriate construction.
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�

Figure D.11
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AppendixE
Power series expansions

E.1 General form of the Taylor and Maclaurin series

Taylor’s theorem may be written in the form:

f (z) = f (b)+
(z−b)

1!
f ′(b)+

(z−b)2

2!
f ′′(b)+

(z−b)3

3!
f ′′′(b)+ · · · . (E.1)

or, alternatively,

f (b+ z) = f (b)+
z
1!

f ′(b)+
z2

2!
f ′′(b)+

z3

3!
f ′′′(b)+ · · · . (E.2)

When b = 0 we obtain Maclaurin’s series.

f (z) = f (0)+
z
1!

f ′(0)+
z2

2!
f ′′(0)+

z3

3!
f ′′′(0)+ · · · . (E.3)

E.2 Miscellaneous Taylor series

sin(b+z) = sinb+ zcosb− z2

2!
sinb− z3

3!
cosb+

z4

4!
sinb+ · · · (E.4)

cos(b+z) = cosb− zsinb− z2

2!
cosb+

z3

3!
sinb+

z4

4!
cosb+ · · · (E.5)

tan(b+z) = tanb+ zsec2b+z2 tanbsec2b+
z3

3
(1+3tan2b)sec2b+ · · · (E.6)

tan
(

π

4
+z
)
= 1+2z+2z2 +

8
3

z3 + · · · (E.7)

arcsin(b+z) = arcsinb+ z
1

(1−b2)1/2 +
z2

2
b

(1−b2)3/2 + · · · (E.8)

arctan(b+z) = arctanb+ z
1

1+b2 −
z2

2!
2b

(1+b2)2 +
z3

3!

[ −2
(1+b2)2+

8b2

(1+b2)3

]

− z4

4!

[ −24b
(1+b2)3 +

48b3

(1+b2)4

]
+ · · · (E.9)

/over
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E.3 Miscellaneous Maclaurin series

• Logarithms

ln(1+ z) = z− 1
2

z2 +
1
3

z3− 1
4

z4 + · · · −1< z≤ 1 (E.10)

ln(1− z) =−z− 1
2

z2− 1
3

z3− 1
4

z4 + · · · −1≤ z< 1 (E.11)

ln
(

1+ z
1− z

)
= 2z+

2
3

z3 +
2
5

z5 +
2
7

z7 + · · · |z|< 1 (E.12)

• Trigonometric

sinz = z− 1
3!

z3 +
1
5!

z5− 1
7!

z7 + · · · |z|< ∞ (E.13)

cosz = 1− 1
2!

z2 +
1
4!

z4− 1
6!

z6 + · · · |z|< ∞ (E.14)

tanz = z+
1
3

z3 +
2

15
z5 +

17
315

z7 + · · · |z|< π

2
(E.15)

secz = 1+
1
2

z2 +
5

24
z4 +

61
720

z6 + · · · |z|< π

2
(E.16)

cscz =
1
z
+

1
6

z+
7

360
z3 +

31
15120

z5 + · · ·0< |z|< π (E.17)

cotz =
1
z
− 1

3
z− 1

45
z3− 2

945
z5−·· · 0< |z|< π (E.18)

• Inverse trig

arcsinz = z+
1
6

z3 +
3

40
z5 +

5
112

z7 + · · · |z|< 1 (E.19)

arctanz = z− 1
3

z3 +
1
5

z5− 1
7

z7 +
1
9

z9−·· · |z|< 1 (E.20)

• Hyperbolic

sinhz = z+
1
3!

z3 +
1
5!

z5 +
1
7!

z7 + · · · |z|< ∞ (E.21)

coshz = 1+
1
2!

z2 +
1
4!

z4 +
1
6!

z6 + · · · |z|< ∞ (E.22)

tanhz = z− 1
3

z3 +
2

15
z5− 17

315
z7 + · · · |z|< π

2
(E.23)

sechz = 1− 1
2

z2 +
5

24
z4− 61

720
z6 · · · |z|< π

2
(E.24)

/over
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E.4 Miscellaneous Binomial series

Setting f (z) = (1+ z)n, n an integer, in the Maclaurin series gives the standard binomial
series:

(1+ z)n = 1+nz+
n(n−1)

2!
z2 + · · ·+ n!

(n−r)!r!
zr + · · · , (E.25)

(1+ z)−1 = 1− z+ z2− z3 + z4−·· · , (E.26)

(1+ z)−2 = 1−2z+3z2−4z3 +5z4 · · · . (E.27)

When n is a half-integer we obtain

(1+ z)1/2 = 1+
1
2

z− 1
8

z2 +
1
16

z3− 5
128

z4 + · · · , (E.28)

(1+ z)−1/2 = 1− 1
2

z+
3
8

z2− 5
16

z3 +
35
128

z4−·· · , (E.29)

(1+ z)−3/2 = 1− 3
2

z+
15
8

z2− 35
16

z3 +
315
128

z4−·· · , (E.30)

We will also need the the inverse of (1+a2z2 +a4z4 +a6z6). Therefore replacing z by
(a2z2 +a4z4 +a6z6) in (E.26) gives

(1+a2z2+a4z4+a6z6)−1 = 1− (a2z2 +a4z4 +a6z6)

+(a2
2z4 +2a2a4z6 + · · ·)2− (a3

2z6 + · · ·)3 +O(z8)

= 1− (a2)z2− (a4−a2
2)z

4− (a6−2a2a4+a3
2)z

6+O(z8).

(E.31)

Furthermore(
1+

a2z2

2
+

a4z4

24
+

a6z6

720

)−1

= 1− z2

2
(a2)−

z4

24
(
a4−6a2

2
)
− z6

720
(
a6−30a2a4+90a3

2
)
.

(E.32)
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Blank page. A contradiction.
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AppendixF
Calculus of variations

The simplest problem in the calculus of variations is as follows. Let F(x,y,y′) be a function
of x and some unspecified function y(x) and also its derivative. For every y(x) we construct
the following integral between fixed points A and B at which x = a and x = b:

J[y] =
∫ b

a
F(x,y,y′)dx. (F.1)

The problem is to find the particular function y(x) which, for a given function F(x,y,y′),
minimises or maximises J[y]. In general we will not be able to say that we have a maximum
or a minimum solution but the context of any particular problem will usually decide the
matter. The following method only guarantees that J[y] will be extremal. The solution here
is valid for twice continuously differentiable functions.
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Figure F.1

We first tighten our notation a little. We assume that an extremal function can be found
and that it is denoted by y(x), the heavy path C in the figure; J[y] then refers to the value of
the integral on the extremal path. We consider the set of all paths AB defined by functions y
where

y(x) = y(x)+ εη(x), (F.2)

where η(x) is an arbitrary function such that η(a) = η(b) = 0, thus guaranteeing that the
end points of all paths are the same. One of these paths is denoted C1 in the figure. The set of
integrals for one given η(x) and varying ε may be considered as generating a function Φ(ε)
such that

Φ(ε) = J[y] = J[y+ εη ] =
∫ b

a
F(x, y+ εη , y′+ εη

′)dx. (F.3)
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In this notation the value of the integral on the extremal path is Φ(0) and the condition that
it is an extremum is

dΦ

dε

∣∣∣∣
ε=0

= 0. (F.4)

The Taylor series for the integrand is

F(x, y+ εη , y′+ εη
′) = F +Fyεη +Fy′εη

′+O(ε2) (F.5)

where Fy and Fy′ denote partial derivatives of F with respect to y and y′ respectively. Sub-
stituting this series into the integral and differentiating with respect to ε gives

dΦ

dε

∣∣∣∣
ε=0

=
∫ b

a

[
Fyη +Fy′η

′]dx = 0. (F.6)

The second term may be integrated by parts to give∫ b

a
Fy′η

′dx =
[
Fy′η

]∣∣∣b
a
−
∫ b

a
η

d
dx

[
Fy′
]

dx. (F.7)

Since the first term vanishes we have proved that for an extremal∫ b

a
η(x)H(x)dx = 0, (F.8)

where H(x) =
d
dx

[
Fy′
]
−Fy. (F.9)

We now show that equation (F.8) implies that H(x) = 0. This result rejoices under the
grand name of ‘the fundamental lemma’ of the calculus of variations. The proof is by
contradiction: first suppose that H(x) 6= 0, say positive, at some point x0 in (a,b). Then
there must be an interval (x1,x2) surrounding x0 in which H(x)> 0. Since η(x) can be any
suitably differentiable function we take η = (x2−x)4(x−x1)

4 in [x1,x2] and zero elsewhere.
Clearly, for such a function we must have

∫ b
a ηH dx> 0, in contradiction to (F.8). Therefore

our hypothesis that H 6= 0 is not valid. Therefore we must have H = 0, giving the Euler–
Lagrange equations:

EULER–LAGRANGE
d
dx

[
∂F
∂y′

]
− ∂F

∂y
= 0. (F.10)

In this equation the partial derivatives indicate merely the formal operations of differentiat-
ing F(x,y,y′) with respect to y and y′ as if they were independent variables. On the other
hand the operator d/dx is a regular derivative and the above equation expands to

∂ 2F
∂x∂y′

+
∂ 2F

∂y∂y′
y′+

∂ 2F
∂y′2

y′′− ∂F
∂y

= 0. (F.11)

This is a second order ordinary differential equation for y(x): it has a solution with two
arbitrary constants which must be fitted at the end points.
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An alternative form of the Euler–Lagrange equations

Using the Euler equation (F.10) we have

d
dx

[
y′Fy′−F(x,y,y′)

]
= y′′Fy′+ y′

d
dx

[
Fy′
]
−Fx−Fyy′−Fy′y′′ =−Fx, (F.12)

giving an alternative equation

d
dx

[
y′Fy′−F

]
+Fx = 0 (F.13)

Functions of the form F(y, y’)

Equation (F.13) shows that if F is independent of x then the equations integrate immediately
since Fx = 0:

y′Fy′−F = constant. (F.14)

Functions of the form F(x, y’)

If F is independent of y then equation (F.10) can be integrated directly since Fy = 0:

Fy′ = constant. (F.15)

Extensions

There are many variants of the above results:

1. F has two (or more) dependent functions: F
(
x, u(x), u′(x), v(x), v′(x)

)
2. F has two (or more) independent variables: F

(
x, y, u(x,y), u′(x,y)

)
3. Both of above: F

(
x, y, u(x,y), u′(x,y), v(x,y), v′(x,y)

)
4. F involves higher derivatives: F(x, y, y′, y′′, . . .).

5. The end points are not held fixed.

Only the first of the above concerns us here. The proof is along the same lines as above but
we need to make two independent variations and set

ū(x) = u(x)+ εη
(u)(x),

v̄(x) = v(x)+ εη
(v)(x).

Equation (F.8) now becomes of the form∫ b

a

[
η
(u)(x)H(u)(x)+η

(v)(x)H(v)(x)
]

dx = 0. (F.16)
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Since η(u) and η(v) are arbitrary independent functions we obtain H(u) = H(v) = 0, i.e.

d
dx

[
∂F
∂u′

]
− ∂F

∂u
= 0, (F.17)

d
dx

[
∂F
∂v′

]
− ∂F

∂v
= 0. (F.18)

Sufficiency

The Euler–Lagrange equations have been shown to be a necessary conditions for the ex-
istence of an extremal integral. The proof of sufficiency is non-trivial and is discussed in
advanced texts.
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AppendixG
Complex variable theory

G.1 Complex numbers and functions

Complex numbers

A complex number z is a pair of real numbers, x, y combined with the basic ‘imaginary’
number ‘i’ in the expression z = x+ iy. Such complex numbers may be manipulated just as
real numbers with the proviso that i2 = −1. We say that x is the real part of the complex
number, x = Re(z), and y is the imaginary part, y = Im(z). From z = x+ iy we form its
complex conjugate z∗ = x− iy. Note that zz∗ = (x+ iy)(x− iy) = x2 + y2. The complex
number z = x+ iy may be be represented as a point (x,y) in a plane which is called the
complex z-plane. It is also useful to introduce polar coordinates in the plane and write

z = x+ iy = r(cosθ + isinθ). (G.1)

In this context we say that r is the ‘modulus’ of z and θ is the
‘argument’ of z and write

r = |z|=
[
x2 + y2]1/2

, θ = arg(z) = arctan
(y

x

)
. (G.2)

Note that we can also write r = |z|=
√

zz∗.

�θ �
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Figure G.1

Complex functions: examples

• The simplest complex function we can consider is a finite polynomial such as:

w(z) = 3+ z+ z2. (G.3)

If we substitute z = x+ iy in this expression, using i2 =−1, we obtain

w(z) = u(x,y)+ iv(x,y) where

{
u(x,y) = 3+ x+ x2− y2,

v(x,y) = y+2xy.
(G.4)

Here we have written w(z) in terms of two real functions of two variables. All com-
plex functions can be split up in this way.
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• Complex functions may be defined by convergent infinite series of the form

w(z) = a0 +a1z+a2z2 +a3z3 +a4z4 +a5z5 + · · · , (G.5)

where the coefficients will, in general, be complex numbers. The real and imaginary
parts of w(z) will be infinite series.

• The complex exponential function is defined by the series

expz = 1+
1
1!

z+
1
2!

z2 +
1
3!

z3 +
1
4!

z4 +
1
5!

z5 + · · · . (G.6)

It can be proved that this series is convergent for all values of z. Note that when z is
purely real, z = x, the series reduces to the usual real definition of exp(x). When z is
purely imaginary, z = iθ say, we get a very interesting result:

exp iθ = 1+
i

1!
θ − 1

2!
θ

2− i
3!

θ
3 +

1
4!

θ
4− i

5!
θ

5 + · · · . (G.7)

Now the real terms in this expansion are simply those in the expansion of cosθ , whilst
the imaginary terms are those that arise in the expansion of sinθ . Therefore we can
write the polar coordinate expression of z in (G.1) as

z = r(cosθ + isinθ) = r exp(iθ) = reiθ . (G.8)

If we raise this result to the n-th power we obtain De Moivre’s theorem:

zn = rn exp(inθ) = rn(cosnθ + isinnθ). (G.9)

• Trigonometric and hyperbolic functions are defined by

sinz =
eiz− e−iz

2i
= z− 1

3!
z3 +

1
5!

z5−·· · , (G.10)

cosz =
eiz + e−iz

2i
= 1− 1

2!
z2 +

1
4!

z4−·· · , (G.11)

tanz =
eiz− e−iz

eiz + e−iz = z+
1
3

z3 +
2
15

z5−·· · , (G.12)

sinhz =
ez− e−z

2
= z+

1
3!

z3 +
1
5!

z5 + · · · (G.13)

coshz =
ez + e−z

2
= 1+

1
2!

z2 +
1
4!

z4 + · · · , (G.14)

tanhz =
ez− e−z

ez + e−z = z− 1
3

z3 +
2
15

z5−·· · . (G.15)

Relations between trigonometric and hyperbolic functions:

cos iz = coshz, sin iz= isinhz, tan iz = i tanhz, (G.16)

cosh iz = cosz, sinh iz= isinz, tanh iz = i tanz. (G.17)
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• Using the compound angle formulae (C.5,C.3) gives

sin(x+ iy) = sinxcos iy+ cosxsin iy = sinxcoshy+ icosxsinhy, (G.18)

cos(x+ iy) = cosxcos iy− sinxsin iy = cosxcoshy− isinxsinhy, (G.19)

tan(x+ iy) =
sinxcoshy+ icosxsinhy
cosxcoshy− isinxsinhy

=
sinxcosx+ isinhycoshy

cos2x cosh2y+ sin2x sinh2y
,

=
sin2x+ isinh2y
cos2x+ cosh2y

. (G.20)

sinh(x+ iy) = sinhxcosh iy+ coshxsinh iy = sinhxcosy+ icoshxsiny, (G.21)

cosh(x+ iy) = coshxcosh iy+ sinhxsinh iy = coshxcosy+ isinhxsiny, (G.22)

tanh(x+ iy) =
sinhxcosy+ icoshxsiny
coshxcosy+ isinhxsiny

=
sinhxcoshx+ isinycosy

cosh2x cos2y+ sinh2x sin2y
,

=
sinh2x+ isin2y
cosh2x+ cos2y

. (G.23)

• Let the real and imaginary parts of the gudermannian function, Equation C.59, be λ

and ψ . Let ζ = λ + iψ .

ζ = gdz = sin−1 tanh(x+ iy), (G.24)

sin(λ + iψ) = tanh(x+ iy) . (G.25)

From Equations G.18 and G.23 the real and imaginary parts give

sinλ coshψ =
sinh2x

cosh2x+ cos2y
, (G.26)

cosλ sinhψ =
sin2y

cosh2x+ cos2y
(G.27)

It is simpler to solve these equations for x and y in terms of λ and φ . Setting

p = sinλ coshψ , (G.28)

q = cosλ sinhψ , (G.29)

Equations G.26, G.27 and their quotient may be written as

sinh2x = p(cosh2x+ cos2y) , (G.30)

sin2y = q(cosh2x+ cos2y) , (G.31)

sinh2x =
p
q

sin2y . (G.32)

Eliminate y from the first and third equations, using sin2 2y+cos2 2y = 1; eliminate x
from the second and third equations, using cosh2 2x− sinh2 2x = 1.

tanh2x =
2p

1+ p2 +q2 =
2sinλ sechψ

1+ sin2
λ sech2

ψ
, (G.33)

tan2y =
2q

1− p2−q2 =
2secλ sinhψ

1− sec2 λ sinh2
ψ
. (G.34)
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Comparing these equations with formulae, C.49 and C.7 , for tanh2x and tan2y,
gives

tanhx = sinλ sechψ, (G.35)

tany = secλ sinhψ . (G.36)

These equations may be inverted but note that from Equations G.24 and C.60

z = gd−1
ζ = sinh−1 tan(λ + iψ),

sinh(x+ iy) = tan(λ + iψ) ,

sinh i(y− ix) = tan i(ψ− iλ ) ,

isin(y− ix) = i tanh(ψ− iλ ) . (G.37)

This is the same equation as G.25 replacing of {x, y, λ , ψ} by {ψ,−λ , y,−x} re-
spectively. With the above substitutions (note sechψ = sech(−ψ)) Equations G.36
and G.35 become:

tanλ = secy sinhx , (G.38)

tanhψ = siny sechx. (G.39)

Equations G.38 and G.39 define the real and imaginary parts of the gudermanian
gdz: Equations G.35 and G.36 define the real and imaginary parts of the inverse
gudermanian gd−1

ζ .

For the application to TMS we use Equation 2.55 to set sechψ = cosφ , sinhψ =
tanφ and tanhψ = sinφ to give

x = tanh−1 [sinλ cosφ ] , λ = tan−1 [sinhx secy] ,

y = tan−1 [secλ tanφ ] , φ = sin−1 [sechx siny] . (G.40)

G.2 Differentiation of complex functions

Before presenting the definition of differentiation of a complex function we examine two
aspects of real differentiation.

Real differentiation in one dimension

The usual definition of the derivative of a real function f (x) is

f ′(x) = lim
δx→0

f (x+δx)− f (x)
δx

. (G.41)

The ‘small print’ of the definition is that the limit when x tends to zero from above (δx→
0+) should be equal to the limit when x tends to zero from below (δx→ 0−). In principle
these limits could be different and we would then have to define two different derivatives,
say f ′+(x) and f ′−(x). A simple example where the limits differ is the function f (x) = |x|,
for which f ′+ =+1 and f ′− =−1 at the origin. The only point we wish to make is that even
in one dimension we must be careful about directions when defining derivatives.
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Real differentiation in two dimensions

In two dimensions we can define two partial derivatives: that with respect to x being the
derivative of f (x,y) when y is held constant, and that with respect to y being the derivative
of f (x,y) when x is held constant. The notation and definitions of the partial derivatives is(

∂ f
∂x

)
y
= lim

δx→0

f (x+δx,y)− f (x,y)
δx

,

(
∂ f
∂y

)
x
= lim

δy→0

f (x,y+δy)− f (x,y)
δy

.

(G.42)
The brackets and subscripts are usually dropped if there is no ambiguity introduced thereby.
There is no reason why the two derivatives should be equal, or even related in any particlar
way.

The above derivatives are along the directions of the coordinate axes but it is perfectly
reasonable to seek a derivative of f (x,y) along any specified direction. To do this we use
Taylor’s theorem (in two dimensions), keeping only the first order terms, so that for a gen-
eral displacement with components δx and δy,

δ f =
∂ f
∂x

δx+
∂ f
∂y

δy. (G.43)

If the direction of the displacement is taken in the direction of the unit vector n and the
magnitude of the displacement is δ s, then we can set δx = nxδ s and δy = nyδ s. We can
then define a directional derivative in two dimensions as(

d f
ds

)
n
= nx

∂ f
∂x

+ny
∂ f
∂y
. (G.44)

The point we wish to stress is that the derivatives of functions of two variables are essentially
dependent on direction.

Differentiation of complex functions

We have seen that a complex function can always be split into two functions of two variables
as in (G.4) and therefore the differentiation of a complex function w(z) = u+ iv may be
expected to parallel the partial differentiation of f (x,y) given above. This would mean that
complex functions were no more that a combination of two real functions. Instead, we
define the derivative of w(z) in a way that parallels the the definition of the derivative of a
real function in one dimension, namely

w′(z) = lim
δ z→0

w(z+δ z)−w(z)
δ z

. (G.45)

The crucial step is that we demand that this limit should exist independent of the direction
in which δ z tends to zero. If such a limit exists in all points of some region of the complex
plane then we say that w(z) is an analytic (or regular) function of z (in that region). This
restriction on differentiation is very strong and as a result analytic functions are very special,
with many interesting properties.
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The Cauchy–Riemann conditions

The Cauchy–Riemann conditions are a pair of equations which are necessarily satisfied if
w(z) is differentiable. To derive them first write out the definition of the derivative in terms
of the functions u(x,y) and v(x,y) and set δ z = δx+ iδy.

w′(z) = lim
δ (x+iy)→0

(
u(x+δx,y+δy)+ iv(x+δx,y+δy)−u(x,y)− iv(x,y)

δx+ iδy

)
. (G.46)

Consider two special cases. In the first we let δ z tend to zero along the real x-axis. Therefore
we set δy = 0, so that the limits reduce to partial derivatives with respect to x:

w′(z) = ux + ivx. (G.47)

Repeating with limit taken along the y-axis, so that δx = 0, we have

w′(z) =
1
i
(uy + ivy) = vy− iuy. (G.48)

If we now demand that these two derivatives w′(z) are the same we have the Cauchy–
Riemann equations:

ux = vy, uy =−vx (G.49)

It can also be shown that if the partial derivatives ux etc. are continuous, then the Cauchy–
Riemann conditions are sufficient for the derivative w′(z) to exist.

Simple examples of differentiation

• As an example of differentiation and the Cauchy–Riemann conditions consider the
function w(z) = z3. Since

w = u+ iv = (x+ iy)3

= x3 +3x2(iy)+3x(iy)2 +(iy)3 (G.50)

the real and imaginary parts and their partial derivatives are

u = x3−3xy2, v = 3x2y− y3.

ux = 3x2−3y2, vx = 6xy,

uy =−6xy, vy = 3x2−3y2.

These equations show that the Cauchy–Riemann equations (G.49) are indeed satisfied
and we can use either (G.47) or (G.48) to identify the derivative as

w′(z) = ux + ivx = vy− iuy

= 3x2−3y2 + i6xy = 3(x+ iy)2

= 3z2. (G.51)
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• Similarly we can prove that w(z) = zn is analytic with a derivative given by w′(z) =
nzn−1. (The proof is easier if the Cauchy–Riemann conditions are written in terms of
polar coordinates and zn is written as rneinθ .

• Consider the function w(z) = sinz. The real and imaginary parts of the sine function
were determined in equation (G.18) so that w(z) = u+ iv where

u = sinxcoshy, v = cosxsinhy.

ux = cosxcoshy, vx =−sinxsinhy,

uy = sinxsinhy, vy = cosxcoshy.

Once again the Cauchy–Riemann equations are indeed satisfied and we can identify
the derivative from equation (G.19):

w′(z) = ux + ivx = vy− iuy

= cosxcoshy− isinxsinhy

= cosz. (G.52)

• In similar ways we can show that all the derivatives of ‘standard’ functions parallel
those that arise for functions of one real variable.

Taylor’s theorem

We state without proof or qualification that under ‘reasonable’ conditions an analytic func-
tion may be represented by a convergent Taylor’s series. In the following development we
shall use the theorem in the following form.

w(z) = w(z0)+
1
1!
(z− z0)w′(z0)+

1
2!
(z− z0)

2w′′(z0)+
1
3!
(z− z0)

3w′′′(z0)+ · · · . (G.53)

It is also true that any convergent power series defines an analytic function. Proofs of these
statements are to be found in the standard texts on complex functions.

/continued overleaf
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G.3 Functions and maps

Mathematicians and geographers both use the term map in essentially the same way. A
complex function w(z) may be viewed as simply a pair of real functions which define a map
in the sense that it takes a point (x,y) in the complex z-plane into a point (u,v) in the complex
w-plane by virtue of the two functions u(x,y) and v(x,y). Points go to points, regions go
to regions, curves through a point go to curves through the image point, (Figure G.2). The
important result is that if w(z) is an analytic function then γ , the angle of intersection of
two curves C1 and C2 at P, is equal to γ ′ the angle of intersection of the image curves at the
image point. Such maps are said to be be conformal. We proceed immediately to the proof
of this statement.
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Figure G.2

Proof of the conformality property

Let z0 be a fixed point on the curve C in the z-plane. Let z be a nearby point on C and write
z− z0 = reiθ . Note that θ is the angle between real axis and the chord; in the limit z→ z0,
this angle will approach the angle between the real axis and the tangent to C at z0. Let w0
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Figure G.3

and w be the corresponding image points and set w−w0 = r′eiθ ′ . Taylor’s theorem tells us
that

w(z) = w(z0)+
1
1!
(z− z0)w′(z0)+

1
2!
(z− z0)

2w′′(z0)+ · · · , (G.54)

so that we can write

w−w0

z− z0
= w′(z0)+

1
2!
(z− z0)w′′(z0)+ · · · . (G.55)
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The derivative of the function w(z) at z0 is a unique complex number which depends only
on the position z0 and we can write it as A(z0)exp(iα(z0)) where A(z0) and α are both real.

Therefore in the limit as z→ z0 equation (G.55) becomes

lim
z→z0

(
r′

r
exp
[
i(θ ′−θ)

])
= w′(z0) = A(z0)exp(iα(z0)), (G.56)

since the remaining terms on the RHS vanish in the limit. We deduce that

lim
z→z0

(
r′

r

)
= A(z0), (G.57)

exp i(θ ′0−θ0) = exp[iα(z0)], (G.58)

where θ0 and θ ′0 are the angles between the tangents and the real axes. Note that the sec-
ond of these equations can be derived only when A 6= 0. The value of θ − θ ′ becomes
indeterminate if A = 0 so we must therefore demand that w′(z0) 6= 0.

The second of the above limits, when it exists, shows that θ ′0 = θ0 +α(z0), that is the
tangent at P is rotated by an angle α when it is mapped to the w-plane. This will be true
of all curves through P and consequently the angle of intersection of any two curves will be
preserved under the mapping. This is the definition of a conformal mapping.

For a given measurement accuracy we can always find an infinitesimal region around P
in which the variation of A and α is imperceptible. Equations (G.57,G.58) then imply that
the small region is scaled and rigidly rotated, so preserving its shape. This is the property
of orthomorphism.
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Blank page. A contradiction.
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AppendixH
Maxima code

H.1 Common code

Some of the following code is taken from the file ’tmseries.max’ at the GeographicLib
website (Karney, 2011). The code may be copied from this pdf file and pasted into any
version of Maxima but there are slight problems which vary with the chosen pdf viewer.
The upquote character (') pastes as a newline-character when copied from Adobe Reader
(as of 2013): the caret character (^) is turned into a circumflex (over the next letter) when
pasted from the Sumatra viewer. Minimal editing will resolve these problems but they may
also be resolved by new versions of the pdf viewers.

The following file is read by all subsequent files. Note that it is a “mac” file whereas the
subsequent files are “wxm” files. The path for the load statement in the wxm files should be
changed appropriately. It contains trivial initialisations: the parameter maxpow controls the
number of terms generated. It also contains code for a maxima function “reverta”, a slightly
modified of the maxima function revert, which carries out a Lagrange reversion for angle
series.

/*===== this file is init.mac ======== */

/* INITIALISE*/

maxpow:4$ /* Max power of e*e */

taylordepth:3$

triginverses:'all$

powerdisp:true$

algebraic:true$

debug:false$

/* LAGRANGE REVERSION

var2 = expr(var1) = series in eps

to

var1 = revertexpr(var2) = series in eps

Require that expr(var1) = var1 to order eps^0. This throws in a

trigreduce to convert to multiple angle trig functions. */

reverta(expr,var1,var2,eps,pow):=block([tauacc:1,sigacc:0,dsig],

dsig:ratdisrep(taylor(expr-var1,eps,0,pow)),

dsig:subst([var1=var2],dsig),

for n:1 thru pow do (tauacc:trigreduce(ratdisrep(taylor(

-dsig*tauacc/n,eps,0,pow))),

sigacc:sigacc+expand(diff(tauacc,var2,n-1))),

var2+sigacc)$
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H.2 Lagrange reversion examples

/*================ this file is lagrange.wxm =================*/

load ("d:/dropbox/maxima/init.mac")$

load("revert")$

/*============================================================*/

print("======= POLYNOMIAL REVERSION =======")$

maxpow:8$

/* print out direct, reverted series */

dir:z$ for i: 2 thru maxpow do block(dir: a[i]*z^i+dir)$

print(w=dir)$

kill(w)$

rev:w$ for i: 2 thru maxpow do block(rev: b[i]*(-1)*w^i+rev)$

print(z=rev)$

/* do the reversion */

p:revert(dir,z)$

/* write out coeffts of reversion */

for i: 2 thru maxpow do print(b[i]=expand((-1)*coeff(p,z^i,1)))$

print("")$print("== POLYNOMIAL REVERSION WITH FACTORIALS===")$

/* exhibit factorial factors in coefficients */

dir:z$ for i: 2 thru maxpow do block(dir: a[i]*z^i/i!+dir)$

print(w=dir)$

kill(w)$

rev:w$ for i: 2 thru maxpow do block(rev: b[i]*(-1)*w^i/i!+rev)$

print(z=rev)$

p:revert(dir,z)$

for i: 2 thru maxpow do print(b[i]=expand((-1)*i!*coeff(p,z^i,1)))$

/*=======================================================*/

print("")$ print("======= SINE SERIES REVERSION =======")$

maxpow:4$

/* display series */

s:phi$ for i: 1 thru maxpow do block(s: b[2*i]*sin(2*i*phi)+s)$

print(eta=s)$

v:eta$ for i: 1 thru maxpow do block(v: d[2*i]*e2^i*sin(2*i*eta)+v)$

print(phi=v)$

/* In applications coeffts b_n are order e^(2n). Here assume

coeffts are O(1) and introduce small eps to define order

of coefft before reversion. Then set eps=1 */

/* define series with eps */

s:phi$

for i: 1 thru maxpow do block(s: b[2*i]*eps^i*sin(2*i*phi)+s)$

eta_phi(phi,eps):=s$

p:subst(eps=1,reverta(eta_phi(phi,eps),phi,eta,eps,maxpow))$

/* write coeffts */

for i: 1 thru maxpow do

print(d[2*i]=coeff(p,sin(2*i*eta),1))$
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H.3 Meridian distance and rectifying latitude

/*================ this file is meridian.wxm =================*/

load ("d:/dropbox/maxima/init.mac")$

/*============================================================*/

rho_fn(\phi):=a*(1-e2)*(1-e2*(sin(phi))^2)^(-3/2)$ /* e2=e*e*/

m(phi,e2):=block([mm],

mm:trigreduce(taylor(rho_fn(phi),e2,0,maxpow)),

mm:integrate(mm,phi),

mm:ratdisrep(taylor(mm,e2,0,maxpow)))$

print("====== coeffts of m(phi) in terms of e ======")$

/*write out series for meridian distance m */

m_series:a[0]*%phi$

for i: 1 thru maxpow do m_series: m_series+ a[2*i]*sin(2*i*%phi)$

m=m_series;

/*===== coeffts in terms of e */

m_e(phi,e):=subst(e2=e*e,m(phi,e2))$

a[0]:a*expand((2/%pi)*subst([phi=%pi/2],m_e(phi,e)/a))$

display(a[0])$

for i: 1 thru maxpow do

a[2*i]:a*coeff(expand(m_e(phi,e)/a),sin(2*i*phi),1)$

for i: 1 thru maxpow do display(a[2*i])$

print("===== coeffts for Helmert form ======")$

m_h:h[0]*%phi$

for i: 1 thru maxpow do m_h: m_h+ h[2*i]*sin(2*i*%phi)$

m=m_h*(a/(1+n));

m_n(phi,n):=block([t], t:subst(e2=4*n/(1+n)^2,m(phi,e2)),

expand(ratdisrep(taylor(t*(1+n),n,0,maxpow))))$ /*t/((1-n)^2*(1+n))*/

h[0]:expand((2/%pi)*subst([phi=%pi/2],m_n(phi,n)/a))$

for i: 1 thru maxpow do

h[2*i]:expand(ratdisrep((1/a)*coeff(m_n(phi,n),sin(2*i*phi),1)))$

display(h[0])$

for i: 1 thru maxpow do display(h[2*i])$

print("====== m_p quadrant (pole-equator) ======")$

m[p]:(%pi/2)*a[0]$

display(m[p])$

m[p]:(a*%pi/2)*(1/(1+n))*h[0]$

display(m[p])$

print("====== rectifying latitude mu(phi) ======")$

/* exhibit series*/

mu_series:%phi$

for i:1 thru maxpow do mu_series: b[2*i]*sin(2*i*%phi)+mu_series$

mu=mu_series;

/* define series and extract coefficients*/
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mu(phi,e2):=expand(ratdisrep(taylor(

(%pi/2)*m(phi,e2)/subst([phi=%pi/2],m(phi,e2)), e2,0,maxpow)))$

muphi_e:subst(e2=e*e,mu(phi,e2))$

for i: 1 thru maxpow do print(b[2*i]=coeff(muphi_e,sin(2*i*phi),1))$

muphi_n:subst(e2=4*n/(1+n)^2,mu(phi,e2))$

muphi_n:expand(ratdisrep(taylor(muphi_n,n,0,maxpow)))$

for i: 1 thru maxpow do print(b[2*i]=coeff(muphi_n,sin(2*i*phi),1))$

print("====== revert to phi(mu) ======")$

/* exhibit series*/

phimu:%mu$

for i:1 thru maxpow do phimu: d[2*i]*sin(2*i*%mu)+phimu$

phi=phimu;

/* define series and extract coefficients*/

phimu_e:subst(e2=e*e,reverta(mu(phi,e2),phi,mu,e2,maxpow))$

for i: 1 thru maxpow do print(d[2*i]=coeff(phimu_e,sin(2*i*mu),1))$

phimu_n:subst(e2=4*n/(1+n)^2,reverta(mu(phi,e2),phi,mu,e2,maxpow))$

phimu_n:expand(ratdisrep(taylor(phimu_n,n,0,maxpow)))$

for i: 1 thru maxpow do print(d[2*i]=coeff(phimu_n,sin(2*i*mu),1))$

H.4 Conformal latitude

/*================ this file is conformal.wxm =================*/

load ("d:/dropbox/maxima/init.mac")$

/*============================================================*/

/* CONFORMAL latitude, chi. Calls LAGRANGE and ARCTAN

chi = gd( gd^{-1}phi -e*atanh^{-1}(e*sinh(phi)))

= asin(tanh( atanh(sin(phi)) - e*atanh(e*sin(phi)) ))

Notation: tanh(qq) = sin(phi) OR sinh(qq) = tan(phi) */

/*-------------------------------------------------------------*/

print("====================================")$

print("CONFORMAL (chi) and GEODETIC (phi) ")$

print("====================================")$

/* define modified atan function */

atanexp(x,eps):=ratdisrep(taylor(atan(x+eps),eps,0,maxpow))$

/* evaluate chi in terms of phi */

psi:qq-e*atanh(e*tanh(qq))$

ratdisrep(taylor(psi,e,0,2*maxpow))$

psi:subst(e=sqrt(e2),psi)$

psi:subst(qq=asinh(tan(phi)),psi)$

tanchi:ratdisrep(taylor(sinh(psi),e2,0,maxpow))$

diff:tanchi-tan(phi)$
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t:subst(x=tan(phi),atanexp(x,eps))$

t:t-subst(eps=0,t)+phi$

t:subst(eps=diff,t)$

t:ratdisrep(taylor(t,e2,0,maxpow))$

t:ratsimp(subst(tan(phi)=sin(phi)/cos(phi),t-phi))+phi$

t:trigreduce(t)$

chi_phi(phi,e2):=t$

print("====== chi(phi) ======")$

s:%phi$ for i: 1 thru maxpow do block(s: b[2*i]*sin(2*i*phi)+s)$

print(chi=s)$

print("====== chi(phi,e) ======")$

chi_e:subst(e2=e*e,t)$

for i: 1 thru maxpow do print(b[2*i]=coeff(chi_e,sin(2*i*phi),1))$

print("====== chi(phi,n) ======")$

chi_n: subst(e2=4*n/(1+n)^2,t)$

chi_n:expand(ratdisrep(taylor(chi_n,n,0,maxpow)))$

for i: 1 thru maxpow do print(b[2*i]=coeff(chi_n,sin(2*i*phi),1))$

/* phi in terms of chi */

print("")$

print("====== phi(chi)) ======")$

s:%chi$

for i: 1 thru maxpow do block(s: d[2*i]*sin(2*i*chi)+s)$

print(phi=s)$

print("====== phi(chi,e) ======")$

/*phi_chi(chi,e2):=''()$*/

phi_chi_e: subst(e2=e*e,reverta(chi_phi(phi,e2),phi,chi,e2,maxpow))$

for i: 1 thru maxpow do print(d[2*i]=coeff(phi_chi_e,sin(2*i*chi),1))$

print("====== phi(chi,n) ======")$

/* e2_n(n):=4*n/(1+n)^2$*/

phi_chi_n: subst(e2=4*n/(1+n)^2,

reverta(chi_phi(phi,e2),phi,chi,e2,maxpow))$

/*phi_chi_n: phi_chi(chi,e2), e2=e2_n(n)$*/

phi_chi_n:expand(ratdisrep(taylor(phi_chi_n,n,0,maxpow)))$

for i: 1 thru maxpow do print(d[2*i]=coeff(phi_chi_n,sin(2*i*chi),1))$

H.5 Authalic latitude

S/*================ this file is authalic.wxm =================*/

load ("d:/dropbox/maxima/init.mac")$

/*============================================================*/

/* AUTHALIC latitude, xi.

xi = asin(q(phi)/q_p)

q(phi) = (1-e2)sin(phi) / 1-e2sin^2(phi)

+(1-e2)/e *atanh(e*sin(phi))

q_p = q(pi/2)

R_q = a sqrt(q_p/2)



Appendix H. Maxima code 220

--------------------------------------------------------------*/

print("====================================")$

print("AUTHALIC (XI) and GEODETIC (phi) ")$

print("====================================")$

print("===define series for xi(phi) ======")$

s:%phi$

for i: 1 thru maxpow do block(s: b[2*i]*sin(2*i*phi)+s)$

%xi=s;

/* evaluate xi in terms of phi */

xia:qq+((1-e*e)/e)*atanh(e*sin(phi))$

xia:ratdisrep(taylor(xia,e,0,2*maxpow))$

xia:subst(e=sqrt(e2),xia)$

xia:subst(qq=(1-e2)*sin(phi)/(1-e2*(sin(phi))^2),xia)$

xia:taylor(xia,e2,0,maxpow)$ if debug then display(xia)$

q_p:subst(phi=%pi/2,xia)$ if debug then display(q_p)$

sin_xi:ratdisrep(taylor(xia/q_p,e2,0,maxpow))$

diff: sin_xi-sin(phi)$

/* define modified asin function */

asinexp(x,eps):=ratdisrep(taylor(asin(x+eps),eps,0,maxpow))$

t:subst(x=sin(phi),asinexp(x,eps))$

t:t-subst(eps=0,t)+phi$

t:subst(eps=diff,t)$

t:ratsimp(t-phi)$

/* need minus %i in next line to get right answer. Better method?*/

t:ratsimp(subst(sqrt(-1+(sin(phi))^2)=-%i*cos(phi),t))$

t:trigreduce(ratdisrep(taylor(t,e2,0,maxpow)))$

xi_phi(phi,e2):=t+phi$ if debug then display(xi_phi(phi,e2))$

print("====== xi(phi,e) ======")$

xi_e: subst(e2=e*e,xi_phi(phi,e2))$ if debug then display(xi_e)$

xi_e:expand(ratdisrep(taylor(xi_e,e,0,2*maxpow)))$

for i: 1 thru maxpow do print(b[2*i]=coeff(xi_e,sin(2*i*phi),1))$

print("====== xi(phi,n) ======")$

xi_n: subst(e2=4*n/(1+n)^2,xi_phi(phi,e2))$

xi_n:expand(ratdisrep(taylor(xi_n,n,0,maxpow)))$ xi_n$

for i: 1 thru maxpow do print(b[2*i]=coeff(xi_n,sin(2*i*phi),1))$

print("")$

print("==== series for phi(xi) ======")$

kill(xi)$ s:%xi$

for i: 1 thru maxpow do block(s: d[2*i]*sin(2*i*%xi)+s)$

print(phi=s)$

kill(xi)$

/* revert series */

print("====== phi(xi,e) ======")$

phi_xi_e: subst(e2=e*e,reverta(xi_phi(phi,e2),phi,xi,e2,maxpow))$

for i: 1 thru maxpow do print(d[2*i]=coeff(phi_xi_e,sin(2*i*xi),1))$

print("====== phi(xi,n) ======")$

phi_xi_n: subst(e2=4*n/(1+n)^2,reverta(xi_phi(phi,e2),phi,xi,e2,maxpow))$
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phi_xi_n:expand(ratdisrep(taylor(phi_xi_n,n,0,maxpow)))$

for i: 1 thru maxpow do print(d[2*i]=coeff(phi_xi_n,sin(2*i*xi),1))$

print("====== authalic radius ======")$

R[q]:a*ratdisrep(subst(e2=e*e,taylor(sqrt(q_p/2),e2,0,maxpow)))$

display(R[q]);

R[q]:ratdisrep(subst(e2=4*n/(1+n)^2,taylor(sqrt(q_p/2),e2,0,maxpow)))$

R[q]:a*expand(ratdisrep(taylor(R[q],n,0,maxpow)))$

display(R[q]);

H.6 Redfearn series

In preparation.
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Blank page. A contradiction.
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AppendixL
Literature and links

This bibliography lists books, journal articles, Wikipedia articles and web sites under a few
broad subject headings: map projections, geodesy, geodesics, mathematics and people. Full
details of some items have links to the next appendix (References and Bibliography).

The National Geospatial-Intelligence Agency provides access to numerous document.

Wikipedia

The Wikipedia pages are variable in quality but they often include useful references to
further material.

Earth radius

Zeno’s paradox

Gall-Peters projection

Geoid

Ellipsoid of revolution

Spheroid

Figure of the Earth

meridian arc

French Geodesic Mission to Peru

French Geodesic Mission to Finland

Datum.

North American datum

OSGB36

Ordnance Survey

Latitude

World Geodetic System

Point scale

Theorema Egregium

Retriangulation of Great Britain

http://earth-info.nga.mil/GandG/publications/
http://en.wikipedia.org/wiki/Earth radius
http://en.wikipedia.org/wiki/Zeno's paradoxes
http://en.wikipedia.org/wiki/Gall-Peters projection
http://en.wikipedia.org/wiki/Geoid
http://en.wikipedia.org/wiki/Ellipsoid_of_revolution
http://en.wikipedia.org/wiki/Spheroid
http://en.wikipedia.org/wiki/Figure_of_the_Earth
http://en.wikipedia.org/wiki/Meridian_arc
http://en.wikipedia.org/wiki/French_Geodesic_Mission
http://en.wikipedia.org/wiki/Torne_Valley
http://en.wikipedia.org/wiki/Datum_(geodesy)
http://en.wikipedia.org/wiki/NAD83
http://en.wikipedia.org/wiki/OSGB36
http://en.wikipedia.org/wiki/Ordnance_Survey
http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/World_Geodetic_System
http://en.wikipedia.org/wiki/Scale_(map)
http://en.wikipedia.org/wiki/Theorema_Egregium
http://en.wikipedia.org/wiki/Retriangulation_of_Great_Britain
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Global Positioning System

Triangulation

Global Positioning System

Great-circle distance

George Biddell Airy

Alexander Ross Clarke

George Everest

Carl Friedrich Gauss

Thomas Harriot

William Lambton

Pedro Nunes

Web links

Map production software

Geocart (2008): a commercial map construction program. (Used in the preparation of the
TM images in Chapters 3 and 8.)

Online coordinate converters

GeoConvert: an online converter from WGS to UTM. Uses highly accurate transformation
equations of Karney (2010).

Geotrans (2010): a free converter which may be downloaded from the National Geospatial-
Intelligence Agency. WGS to UTM and many other possibilities. Based directly on the
Redfearn transformations of Chapter 7.

Geoscience Australia provides online coordinate conversion and several spreadsheet calcu-
lators available through the links on page 2 of the manual. The spreadsheets were designed
for use in Australia only but can be converted to global use by minor modifications.

Online calculators for geodesics, distance, rhumbs, etc

GeodSolve: an online calculator for WGS84 only. Solves direct and inverse problems. Uses
highly accurate transformation equations of Karney (2010).

Ed Williams’ Aviation page. Choice of several ellipsoids as well as mean sphere. Also
calculators for way points, rhumb lines etc.

FAI: Choice of WGS ellipsoid or mean sphere.

csgnet Sphere only. Radius such that one arc minute is equal to nautical mile. Way points.

http://en.wikipedia.org/wiki/Global Positioning System
http://en.wikipedia.org/wiki/Triangulation
http://en.wikipedia.org/wiki/Global Positioning System
http://en.wikipedia.org/wiki/Great-circle distance
http://en.wikipedia.org/wiki/George_Biddell_Airy
http://en.wikipedia.org/wiki/Alexander_Ross_Clarke
http://en.wikipedia.org/wiki/George_Everes
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Thomas Harriot
http://en.wikipedia.org/wiki/William_Lambton
http://en.wikipedia.org/wiki/Pedro Nunes
http://geographiclib.sourceforge.net/cgi-bin/GeoConvert
http://earth-info.nga.mil/GandG/publications/
http://earth-info.nga.mil/GandG/publications/
http://www.ga.gov.au/
http://www.ga.gov.au/geodesy/datums/redfearn_geo_to_grid.jsp
http://www.icsm.gov.au/gda/gdatm/gdav2.3.pdf
http://geographiclib.sourceforge.net/cgi-bin/GeodSolve
http://williams.best.vwh.net/gccalc.htm
http://www.fai.org/distance calculation/
http://www.csgnetwork.com/marinegrcircalc.html
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Meridional parts

Map projections

• Maling (1992) Coordinate Systems and Map Projections
Intermediate level text book covering the general features of all projections and details
of some. no derivation of the Redfearn formulae. Lots of interesting material.

• Snyder (1987) Map Projections: a Working Manual
Comprehensive summary of most projections in practical use but with no derivations.
Free. (See link)

• Snyder (1993) Flattening the Earth: Two Thousand Years of Map Projections.
Comprehensive survey of the history of projections. Inexpensive paperback.

• Bugayevskiy and Snyder (1995) Map Projections: A Reference Manual,
Advanced text book.

• OSGB (1999) A guide to coordinate systems in Great Britain here.
Excellent short survey of geodesy and projections.

• Richardus and Adler (1972) Map Projections,
A highly condensed advanced text.

• Irish National Grid

Geodesy

• Torge (1980) Geodesy
Clear but fairly advanced survey based on modern satellite methods. Available in an
inexpensive edition.

• The American Practical Navigator
Good very elementary discussion. (Chapter 2)

• OSGB (1999) A guide to coordinate systems in Great Britain here.
Excellent short survey of geodesy and projections.

• Clarke (1880) Geodesy
Very clear classic now available as inexpensive reprint (see link). The techniques are
outmoded but there are excellent discussions of early determinations of the figure of
the Earth and the definition of the metre.

• Laub (1983) Geodesy and Map Projections

• WGS (1984) Earth gravitational model.

http://www.csgnetwork.com/marinemeridparts2calc.html
http://www.ordnancesurvey.co.uk/oswebsite/gps/information/coordinatesystemsinfo/guidecontents
http://www.asprs.org/resources/grids/03-99-ireland.pdf
http://www.answers.com/topic/the-american-practical-navigator-chapter-2
http://www.ordnancesurvey.co.uk/oswebsite/gps/information/coordinatesystemsinfo/guidecontents
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• WGS (1984) Geodesy for the Layman

• WGS (1984) World Geodetic System 1984 - Its Definition and Relationships with
Local Geodetic Systems

Survey Review (SR)

The Survey Review was the principal British source of papers on surveying and cartogra-
phy at the time (mid twentieth century) when the first modern British maps based on the
transverse Mercator projection were being prepared by the OSGB. Note that until 1962 the
journal was entitled the Empire Survey Review.

Two important papers are included below. The first, by Lee, is the first article in the
journal to present a correct derivation of the Transverse Mercator projection formulae using
Krüger’s lambda expansion. The second paper, by Redfearn, presents a derivation of the
series to high enough order to be applicable to all practical problems. These are the papers
which are the basis of this article. A number of other papers from the journal are related to
the Transverse Mercator projection.

It should be said at once that these papers are fairly terse when it comes to the derivations
of the projection formulae. The present article errs in the other direction and it is fair to say
that no extra technical details will be found in the original papers. Note also that this article
uses a different convention for the names of axes; basically x and y are exchanged.

• Lee (1945) The transverse Mercator projection of the spheroid

• Lee (1946a) The nomenclature of map projections,

• Lee (1946b) The convergence of the meridians

• Lee (1954) A transverse Mercator projection of the spheroid alternative to the Gauss-
Krüger form

• Lee (1976) Conformal projections based on Jacobian elliptic functions

• Redfearn (1948) Transverse Mercator formulae

• Hotine (1946) The orthomorphic projection of the spheroid, parts I–V

Geodesics

• Vincenty (1976) Direct and inverse solutions of geodesics on the ellipsoid with appli-
cations of nested tables
The formulae encoded into many calculations of ellipsoid geodesics. Now improved
by the following:

• Karney (2012) Accurate algorithms which are applicable to near-antipodal points
(where Vincenty fails).
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Mathematics

The appendices include all the mathematics we require and a little more besides. They are
derived from first principles and should hopefully not require further background reading.
In their preparation I found that modern texts were not helpful on the whole because they
were too distant from application. The older books were much more useful. A few texts are
listed here.

Spherical Trigonometry

• Smart (1962) Textbook on spherical astronomy
First chapter is a compact survey of Spherical Trigonometry.

• Todhunter (1859) Spherical Trigonometry,
A splendid traditional account of the subject. Many editions. Final edition (1901)
revised by J G Leathem is best.

• Euclid (300BC) The elements.
Book 11 contains results required by Todhunter.

Differential Geometry

• WEATHERBURN C E, (1939), Differential Geometry, Cambridge.

An old, but good, straightforward account in approachable notation. Modern texts
tend to set up much more ‘elaborate’ machinery before encountering reality.

Lagrange Reversion

The derivation of the Lagrange expansions has essentially disappeared from modern texts.
The proof in Appendix B is a combination of

• WHITTAKER C E, (1902), Modern Analysis, Cambridge.

• COPSON E T, (1935), Theory of Functions of a Complex Variable, Oxford
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More references

Surveying

• RAINSFORD H F, (1957), Survey adjustments and least squares, Constable, EUMAIN

.52633 RAI

Projections

• JACKSON J E, (1987), Sphere, Spheroid and Projections for Surveyors, BSP Profes-
sional Books, ISBN: 0632-01867-4. [ROB TA 549 .Jac]

SR

• BOMFORD, A G (1962), Survey Review, Vol 16, Part 125 pp 318–327.
Transverse Mercator arc-to-chord and finite distance scale factor formulae.

• COLE, J H (1946), Survey Review, Vol 8, Part 59 pp 191–194.
Computation of distances of long arcs for radio purposes.

• HIRVONEN, R A (1953), Bulletin Geodesique, Part 30, pp 369–392.
Two papers: (a) Nutshell tables of mathematical functions for interpolation with cal-
culating machines; (b) Tables for the computation of long lines.

• HIRVONEN, R A (1957), Bulletin Geodesique, Part 43, pp 3–15.
Computations of triangulations on the ellipsoid by the aid of closed formulas.

• HOTINE, M (1946b), Survey Review, Vol 8, Part 61 pp 276–277.
Nomenclature of map projections.

• LAMBERT, W D (1944), Survey Review, Vol 7, Part 50 pp 172–176.
The distance between two widely spaced points on the surface of the Earth. (This is
actually a review of a paper by Lambert).

• LAUF, G B (1948), Survey Review, Vol 9, Part 68 pp 259–260.
The length of the meridian arc.

• LEE, L P (1946b), Survey Review, Vol 8, Part 60 pp 217–219.
Nomenclature of map projections.

• LEE , L P (1946c), Survey Review, Vol 8, Part 61 pp 267–271.
The convergence of the Meridians. YES

• LEE, L P (1954), Survey Review, Vol 12, Part 87 pp 12–17.
A transverse Mercator projection of the spheroid alternative to the Gauss-Krüger
form.
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• RAINSFORD, H F (1946), Survey Review, Vol 8, Part 56 pp 53–68 and Part 57
pp 102–114.
The Clarke formulae for latitude, longitude and reverse azimuth, with corrective terms
on very long lines. Part I: Large spheroidal triangles. Part II: The Clarke formulae in
detail.

• RAINSFORD, H F (1949), Survey Review, Vol 10, Parts 71,72 pp 19–29 and 74–81.
Long lines on the earth: various formulae.

• RAINSFORD, H F (1953), Bulletin Geodesique, Part 37, pages 12–22.
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normal section, 93
parameters a, b, e, f , n, e′, 88
prime vertical, 93
principal curvature, 95
WGS84, 88

ellipsoid of revolution, 9, 87
ellipsoid, area, 107
elliptic integral, 97
equal area projection, 13, 31
equidistant projection, 30
Euler’s formula, 95, 160
Euler–Lagrange equations, 202

figure of the Earth, 9
fixed point iteration, 91, 101, 113
flattening, 10, 88
footpoint, 60
footpoint latitude, 60, 118
footpoint parameter, 73, 118

Gall projection, 46
Gauss, 17
Gauss–Krüger projection, 17
geocentric latitude, 87
geodesic, 97
geodesy, 9, 223
geodetic latitude, 87
Geotrans (Geographic translator), 134
graticule, 14, 50
great circle, 21
Greenland, size, 30
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grid bearing, 15, 27, 61, 62
grid convergence, 15, 61, 62, 128, 145
grid north, 62
grid origins, true and false, 135
grid reference system

MGRS, 138
NGGB, 139
UTM, 138

GRS(1980) ellipsoid, 10

Halley, Edmond, 17
Harriot, Thomas, 17
Helmert’s meridian distance, 100

Indian datum, 11
infinitesimal element

ellipsoid, 97
sphere , 24

inverse meridian distance, 101
isometric latitude, 36, 90, 111
isotropic scale, see scale

Lagrange expansion, 78, 163–175
Lagrange reversion, 227
Lambert, Johann, 17, 31, 49
latitude

authalic, 90, 103, 107
auxiliary, 102
conformal, 90, 103, 104, 112, 113
geocentric, 87, 90
geodetic, 87
isometric, 36, 90, 111
parametric, 90, 92
rectifying, 90, 101, 103, 106
reduced, 90, 92

Lee, L P, 226
local scale, see scale
loxodrome, 37

Maling, D H, 225
Maxima, 215
Mercator parameter, 36, 80, 103, 111
Mercator projection

NMS, 12, 15, 32–47
NMS→TMS, 71–75
TMS, 12, 15, 49–69
NME, 12, 15, 111, 111
TME, 12, 15, 117–134
British grid, see NGGB
oblique, 12
universal, see UTM

Mercator projections
TME, 226

Mercator, Gerardus, 15
meridian, 21, 87
meridian arc surveys, 10
meridian curvature, 94
meridian distance, 60, 98, 118

inverse, 101
Bessel’s form, 99
equator to pole, 100
Helmert’s form, 100
metric, 96

Meusnier’s theorem, 94, 158
mil, 22
Molyneux, Emery, 16

Napier, 17
National Grid of Great Britain, see NGGB
nautical mile, 24
Newton-Raphson method, 101
NGGB, 19, 62, 139
North American datum, 11

Ordnance Survey of Great Britain, see OSGB
orthomorphic projection, 13
OSGB, 11, 13, 14, 91, 150, 223
OSGB36 datum, 11

parametric latitude, 92
Peters projection, 46
plane chart, 30
Plate Carrée projection, 30
point scale, see scale
polar distance, 100
portolans, 30
prime vertical plane, 93
principal curvature, 95
projection

conformal, 13, 35, 103
double projection, 102, 104
equal area, 13
equidistant, 29
equidistant projection, 30
equirectangular, 29
faithfulness criteria, 12
Gall, 46
Gauss–Krüger, 17
Lambert equal area, 31
Mercator, see Mercator projections
normal cylindrical, 26
orthomorphic, 13
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Peters, 46
plane chart, 30
Plate Carrée, 29, 30
Ptolemy, 30
singular points, 12
Universal Mercator, see UTM

Ptolemy, 30

radian–degree conversion, 22
rectifying latitude, 90, 101, 103, 106
Redfearn, J C B, 121, 132, 226
reduced latitude, 90, 92
reference ellipsoid, 10
reference grid, 14
RF, 27
rhumb line, 37, 111

scale, 12, 14
NGGB and UTM, 142
area, 28
azimuth, 28

isotropic, 13
Mercator, 28, 45
Mercator, transverse, 61, 129
meridian (h), 28

secant projections, 45
small circle, 21
South America, size, 30
spherical limit, 95, 96, 120
spherical trigonometry, 50, 183–196, 227
spheroid, 9
Survey Review, 226

topographic surveying, 10
true north, 62

Universal Transverse Mercator, see UTM
UTM, 19, 49, 62, 223

WGS84, 10, 88, 98, 100
Wikipedia articles, 223
Wright, Edward, 16
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